Photothermal therapy following microscopic temperature detection can avoid overheating effects or insufficient heating, and thus improve therapeutic efficacy. In this study, biocompatible dual-functional nanoparticles (NPs) are constructed from polypyrrole (PPy) and rhodamine B (RB) by a one-step modified polymerization method. The polypyrrole serves as a photothemal agent, and rhodamine B acts as a temperature-sensing probe. The polypyrrole-rhodamine B (PPy-RB) NPs possess a high photothermal effect on irradiation by 808 nm laser, and a competent temperature sensitivity for the real-time temperature monitoring based on the emission intensity response of rhodamine B. After acting on HepG2 cells, the PPy-RB NPs can effectively induce cancer cell death, and the microscopic temperature is monitored by fluorescence feedback from rhodamine B during PTT by laser confocal microscopy. Hence, the proposed approach can supply a facile and promising way for the fabrication of effective theranostic nanoplatforms assisted by self-monitoring of cancer therapeutic processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9tb02274k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!