Link N suppresses interleukin-1β-induced biological effects on human osteoarthritic cartilage.

Eur Cell Mater

Orthopaedics Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Department of Experimental Surgery, Faculty of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2,

Published: January 2020

Osteoarthritis (OA) is a disease of diarthrodial joints associated with extracellular matrix proteolytic degradation under inflammatory conditions, pain and disability. Currently, there is no therapy to prevent, reverse or modulate the disease course. The present study aimed at evaluating the regenerative potential of Link N (LN) in human OA cartilage in an inflammatory milieu and determining if LN could affect pain-related behaviour in a knee OA mouse injury model. Osteo-chondro OA explants and OA chondrocytes were treated with LN in the presence of interleukin-1β (IL-1β) to simulate an osteoarthritic environment. Quantitative von Frey polymerase chain reaction and Western blotting were performed to determine the effect of LN on matrix protein synthesis, catabolic enzymes, cytokines and nerve growth factor expression. Partial medial meniscectomy (PMM) was performed on the knee of C57BL/6 mice and, 12 weeks post-surgery, mice were given a 5 µg intra-articular injection of LN or phosphate-buffered saline. A von Frey test was conducted over 24 h to measure the mechanical allodynia in the hind paw. LN modulated proteoglycan and collagen synthesis in human OA cartilage through inhibition of IL-1β-induced biological effects. LN also supressed IL-1β-induced upregulation of cartilage-degrading enzymes and inflammatory molecules in OA chondrocytes. Upon investigation of the canonical signalling pathways IL-1β and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), LN resulted to significantly inhibit NF-κB activation in a dose-dependent manner. In addition, LN suppressed mechanical allodynia in an OA PMM mouse model. Results supported the concept that LN administration could provide therapeutic potential in OA.

Download full-text PDF

Source
http://dx.doi.org/10.22203/eCM.v039a04DOI Listing

Publication Analysis

Top Keywords

biological effects
8
human cartilage
8
von frey
8
mechanical allodynia
8
link suppresses
4
suppresses interleukin-1β-induced
4
interleukin-1β-induced biological
4
effects human
4
human osteoarthritic
4
osteoarthritic cartilage
4

Similar Publications

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.

Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.

View Article and Find Full Text PDF

Background: Several epidemiological studies and intervention trials have demonstrated that grapes and blueberries, which are rich in flavanols, can lower the risk of cardiovascular disease. However, the mechanisms of action of these compounds remain unclear due to their low bioavailability.

Objective: This study aimed to characterize the sensory properties, blood flow velocity, and oxidative stress of a polyphenol rich grape and blueberry extract (PEGB) containing approximately 16% flavanols (11% monomers and 4% dimers).

View Article and Find Full Text PDF

Background: Cryoablation induces antitumor immune responses. Spatial transcriptomic landscape technology has been used to determine the micron-level panoramic transcriptomics of tissue slices in situ.

Methods: The effects of cryoablation on the immune microenvironment in non-small cell lung cancer (NSCLC) were explored by comparing the Whole Transcriptome Atlas (WTA) panel of immune cells before and after cryoablation using the spatial transcriptomic landscape.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!