Previous studies have demonstrated that the expression of CARD10 is closely associated with the occurrence of tumors, and its role is mainly to promote tumor progression by activating the transcription factor NF‑κB. However, the signaling pathway in renal cancer remains unclear. The objective of the present study was to investigate the ability of caspase recruitment domain 10 (CARD10) to regulate the NF‑κB signaling pathway and promote the progression of renal cell carcinoma (RCC). Expression of CARD10 in ACHN, 786‑O and HK‑2 cells was evaluated via western blot analysis, as was the epidermal growth factor (EGF)‑induced activation of NF‑κB signaling pathway‑related proteins in cells. The expression of CARD10 was inhibited by CARD10 short hairpin RNA transfection. Cell cycle analysis and MTT assays were used to evaluate cell proliferation. Cell apoptosis was analyzed via flow cytometry. The invasion of renal cell lines was detected via Transwell cell migration and invasion assays in vitro. The results showed that CARD10 expression was significantly higher in RCC cells than in normal renal tubular epithelial cells. CARD10 silencing inhibited the proliferation, invasion and migration of RCC cells. EGF stimulation upregulated the activation of the NF‑κB pathway in RCC cells. Inhibition of CARD10 expression inhibited NF‑κB activation in RCC cells. Taken together, these data suggested that CARD10 promotes the progression of renal cell carcinoma by regulating the NF‑κB signaling pathway. Thus, this indicated that CARD10 may be a novel therapeutic target in RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896372PMC
http://dx.doi.org/10.3892/mmr.2019.10840DOI Listing

Publication Analysis

Top Keywords

nf‑κb signaling
20
renal cell
16
signaling pathway
16
rcc cells
16
progression renal
12
cell carcinoma
12
expression card10
12
card10
11
card10 promotes
8
promotes progression
8

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!