The crystallization mechanism and kinetics of amorphous materials are of paramount importance not only in basic science but also in the application field because they are closely related to their thermal stability. In the case of amorphous nanomaterials, thermal stability distinctively different from that of bulk materials often emerges. Despite intensive studies in the past, a thorough understanding of the stability at the molecular level has not been reached particularly on how crystallization processes depend on size and are influenced by their surface and interface. In this article, we report the film-size-dependent crystallization of thermally relaxed nonporous ASW ultrathin films on a Pt(111) surface as a benchmark system of amorphous molecular films. The crystallization processes at the surface and interior of the ASW ultrathin films are monitored simultaneously with thermal desorption and infrared reflection absorption, respectively, as a function of the film thickness. Here, we demonstrate that the crystallization is initiated solely by "homogeneous nucleation" irrespective of the film thickness while the crystallization rate remarkably depends on the thickness; the rate of 5-layer (∼1.5 nm) ASW films is one order of magnitude higher than that of 20-layer (∼6 nm) films. Moreover, we found a clear correlation between the film-thickness-dependent crystallization kinetics and microscopic structural disorder associated with the broad distribution of hydrogen-bond lengths between water molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp05981dDOI Listing

Publication Analysis

Top Keywords

crystallization
8
films crystallization
8
thermal stability
8
crystallization processes
8
asw ultrathin
8
ultrathin films
8
film thickness
8
films
6
thickness
4
thickness dependent
4

Similar Publications

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

Discovery of a novel exceptionally potent and orally active Nur77 ligand NB1 with a distinct binding mode for cancer therapy.

Acta Pharm Sin B

December 2024

State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.

The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.

View Article and Find Full Text PDF

Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.

View Article and Find Full Text PDF

A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.

View Article and Find Full Text PDF

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!