Objective: Decitabine is reported to be valuable in treating multiple malignant blood diseases. However, the application of decitabine in myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) has not been fully examined. Thus, our study aimed to investigate the clinical efficacy and safety of decitabine in treating such patients.

Materials And Methods: Clinical data of MDS or AML patients treated with decitabine were retrospectively analyzed. All the patients were regularly followed up, and the risk factors affecting clinical efficacy were also detected.

Results: A total of 36 patients (MDS, n = 27; AML, n = 9) were included in the study. The response rate of MDS patients was 55%, and there were three cases (15%) of complete remission (CR), three cases (15%) of marrow CR, and five cases (15%) of hematologic improvement. It was about three cycles to achieve the best efficiencies. Gender, age, percentage of blasts in bone marrow, International Prognostic Scoring System risk group, and cytogenetic factors were not associated with response rate. The median overall survival of MDS patients was 8 (1-44) months. Agranulocytosis (P = 0.037) and severe anemia (P = 0.044) were the independent factors for prognosis. The complete response rate of AML was 33.3%. From the investigation, infection was the most common complication in our cohort, especially lung infection with the incidence of 27.8%.

Conclusions: Our data demonstrated that decitabine was effective and relatively safe in treating MDS and AML. Patients with agranulocytosis and severe anemia were prone to have poor survival, which should be monitored in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0973-1482.204849DOI Listing

Publication Analysis

Top Keywords

mds aml
12
response rate
12
cases 15%
12
decitabine effective
8
effective safe
8
acute myeloid
8
myeloid leukemia
8
clinical efficacy
8
aml patients
8
mds patients
8

Similar Publications

Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, -FPD), caused by monoallelic deleterious germline variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date.

View Article and Find Full Text PDF

Purpose: Relapsed and/or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome continue to have a poor prognosis with limited treatment options despite advancements in rational combination and targeted therapies. Belinostat (an HDAC inhibitor) and Pevonedistat (a NEDD8 inhibitor) have each been independently studied in hematologic malignancies and have tolerable safety profiles with limited single-agent activity. Preclinical studies in AML cell lines and primary AML cells show the combination to be highly synergistic, particularly in high-risk phenotypes such as p53 mutant and FLT-3-ITD positive cells.

View Article and Find Full Text PDF

U2AF1 mutation causes an oxidative stress and DNA repair defect in hematopoietic and leukemic cells.

Free Radic Biol Med

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin 301617, China. Electronic address:

U2AF1 is a core component of spliceosome and controls cell-fate specific alternative splicing. U2AF1 mutations have been frequently identified in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients, and mutations in U2AF1 are associated with poor prognosis in hematopoietic malignant diseases. Here, by forced expression of mutant U2AF1 (U2AF1 S34F) in hematopoietic and leukemic cell lines, we find that U2AF1 S34F causes increased reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

JAGN1 (Jagunal-homolog1) is a ER-resident transmembrane protein which is part of the early secretory pathway and granulocyte colony-stimulating factor receptor mediated signaling. Autosomal recessively inherited variants in the JAGN1 gene lead to congenital neutropenia, early-onset bacterial infections, aphthosis and skin abscesses due to aberrant differentiation and maturation of neutrophils. In addition, bone metabolism disorders and a syndromic phenotype, including facial features, short stature and neurodevelopmental delay, have been reported in affected patients.

View Article and Find Full Text PDF

Chromosomes 5 and 7 are large chromosomes that contain close to 1,000 genes each. Deletions of the long arms or loss of the entire chromosome (monosomy) are common defects in myeloid disorders, particularly MDS and AML. Loss of material from either chromosome 5 or 7 results in haploinsufficiency of multiple genes, with some implicated in leukemogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!