Variable selection and estimation in causal inference using Bayesian spike and slab priors.

Stat Methods Med Res

Department of Mathematics, Computer Science, and Statistics, Gustavus Adolphus College, St. Peter, USA.

Published: September 2020

Unbiased estimation of causal effects with observational data requires adjustment for confounding variables that are related to both the outcome and treatment assignment. Standard variable selection techniques aim to maximize predictive ability of the outcome model, but they ignore covariate associations with treatment and may not adjust for important confounders weakly associated to outcome. We propose a novel method for estimating causal effects that simultaneously considers models for both outcome and treatment, which we call the bilevel spike and slab causal estimator (BSSCE). By using a Bayesian formulation, BSSCE estimates the posterior distribution of all model parameters and provides straightforward and reliable inference. Spike and slab priors are used on each covariate coefficient which aim to minimize the mean squared error of the treatment effect estimator. Theoretical properties of the treatment effect estimator are derived justifying the prior used in BSSCE. Simulations show that BSSCE can substantially reduce mean squared error over numerous methods and performs especially well with large numbers of covariates, including situations where the number of covariates is greater than the sample size. We illustrate BSSCE by estimating the causal effect of vasoactive therapy vs. fluid resuscitation on hypotensive episode length for patients in the Multiparameter Intelligent Monitoring in Intensive Care III critical care database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013449PMC
http://dx.doi.org/10.1177/0962280219898497DOI Listing

Publication Analysis

Top Keywords

spike slab
12
variable selection
8
estimation causal
8
slab priors
8
causal effects
8
outcome treatment
8
estimating causal
8
squared error
8
treatment estimator
8
causal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!