Alginate has demonstrated high applicability as a matrix-forming biomaterial for cell immobilization due to its ability to make hydrogels combined with cells in a rapid and non-toxic manner in physiological conditions, while showing excellent biocompatibility, preserving immobilized cell viability and function. Moreover, depending on its application, alginate hydrogel physicochemical properties such as porosity, stiffness, gelation time, and injectability can be tuned. This technology has been applied to several cell types that are able to produce therapeutic factors. In particular, alginate has been the most commonly used material in pancreatic islet entrapment for type 1 diabetes mellitus treatment. This chapter compiles information regarding the alginate handling, and we describe the most important steps and recommendations to immobilize insulin-producing cells within a tuned injectable alginate hydrogel using a syringe-based mixing system, detailing how to assess the viability and the biological functionality of the embedded cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0215-7_26DOI Listing

Publication Analysis

Top Keywords

insulin-producing cells
8
injectable alginate
8
alginate hydrogel
8
alginate
6
immobilization ins1e
4
ins1e insulin-producing
4
cells
4
cells injectable
4
alginate hydrogels
4
hydrogels alginate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!