Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this chapter, the properties of tailor-made anionic exchanger resins based on films of large polyethylenimine polymers (e.g., molecular weight 25,000) as supports for strong but reversible immobilization of proteins are shown. The polymer is completely coated, via covalent immobilization, the surface of different porous supports. Proteins can interact with this polymeric bed, involving a large percentage of the protein surface in the adsorption. Different enzymes have been very strongly adsorbed on these supports, retaining enzyme activities. On the other hand, adsorption is very strong and the derivatives may be used under a wide range of pH and ionic strengths. These supports may be useful even to stabilize multimeric enzymes, by involving several enzyme subunits in the immobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0215-7_8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!