Commercial epoxy supports may be very useful tools to stabilize proteins via multipoint covalent attachment if the immobilization is properly designed. In this chapter, a protocol to take full advantage of the support's possibilities is described. The basics of the protocol are as follows: (1) the enzymes are hydrophobically adsorbed on the supports at high ionic strength. (2) There is an "intermolecular" covalent reaction between the adsorbed protein and the supports. (3) The immobilized protein is incubated at alkaline pH to increase the multipoint covalent attachment, thereby stabilizing the enzyme. (4) The hydrophobic surface of the support is hydrophylized by reaction of the remaining groups with amino acids in order to reduce the unfavorable enzyme-support hydrophobic interactions. This strategy has produced a significant increase in the stability of penicillin G acylase compared with the stability achieved using conventional protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0215-7_6 | DOI Listing |
Int J Biol Macromol
December 2024
Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain. Electronic address:
The focus of the present work is to find the optimal conditions for the activation of agarose beads with divinyl sulfone (DVS). The reactivity of the vinyl sulfone groups in the support was checked by the support capacity to react with ethylamine; via elemental analysis. In addition, trypsin was used as a model enzyme to test the immobilization and stabilization capabilities of the different supports.
View Article and Find Full Text PDFLangmuir
September 2024
Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235.
Although Nature's evolution and intelligence have gifted humankind with noteworthy enzyme candidates to simplify complex reactions with ultrafast, overselective, effortless, mild biological reactions for millions of years, their availability at minute-scale, short-range time-temperature stability, and purification costs hardly justify recycling/or reuse. Covalent immobilization, particularly via multipoint bonds, prevents denaturing, maintains activities for long-range time, pH, and temperature, and makes catalysts available for repetitive usages; which attracts researchers and industries to bring more immobilized enzyme contenders in science and commercial progressions. Inert-support activation, the most crucial step, needs appropriate activators; under mild conditions, the activator's functional group(s) still present on the activated support rapidly couples the enzyme, preventing unfolding and keeping the active site alive.
View Article and Find Full Text PDFJ Am Chem Soc
July 2024
Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Covalent organic frameworks (COFs) offer an irreplaceable platform for mass transport, as they provide aligned one-dimensional channels as pathways. Especially, proton conduction is of great scientific interest and technological importance. However, unlike proton conduction under humidity, anhydrous proton conduction remains a challenge, as it requires robust materials and proceeds under harsh conditions.
View Article and Find Full Text PDFJ Am Chem Soc
December 2023
Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Anal Biochem
January 2024
School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Guangxi Key Laboratory of Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, PR China. Electronic address:
This study investigates the co-catalytic capabilities of MoO nanosheets in enhancing the enzyme-like catalytic activity of a two-dimensional ultrathin Fe(III)-modified covalent triazine framework (Fe-CTF) under neutral pH conditions. The unique physicochemical surface properties and two-dimensional structures of Fe-CTF enable the direct immobilization of native enzymes (glucose oxidase (GOD) and xanthine oxidase (XOD)) through adsorption, eliminating the need for chemical processes. Efficient immobilization of the native enzymes within the Fe-CTF/GOD(XOD) hybrid is achieved through multipoint attachment involving various interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!