Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: This article compares the physical performance of the 4-ring digital Discovery MI (DMI) and PMT-based Discovery MI-DR (DMI-DR) PET/CT systems. Physical performance was assessed according to the NEMA NU 2-2012 standards. Performance measures included spatial resolution, image quality, scatter fraction and count rate performance, and sensitivity. Energy and timing resolutions were also measured. Published DMI and DMI-DR performance studies from other centers are reviewed and compared.
Results: 4-ring DMI spatial resolution at 1-cm radial offset in the radial, tangential and axial directions was 4.62, 4.18 and 4.57 mm, respectively, compared with the DMI-DR system values of 4.58, 4.52, and 5.31 mm. Measured sensitivity was 13.3 kcps/MBq at the center of the FOV and 13.4 kcps/MBq 10 cm off-center for the SiPM-based DMI system. DMI-DR system sensitivity was 6.3 kcps/MBq at the center of the FOV and 6.8 kcps/MBq at 10 cm off-center. DMI measured noise equivalent count rate peak was 175.6 kcps at 20.1 kBq/ml; DMI-DR was 146.7 kcps at 31.7 kBq/ml. Scatter fraction was 40.5% and 36.6%, respectively. DMI image contrast recovery (CR) values ranged from 73.2% (10 mm sphere) to 91.0% (37 mm sphere); DMI-DR, values ranged from 68.4% to 91.4%. DMI background variability (BV) was 1.8%-6.5%; DMI-DR was 2.3%-9.1%. The Q.Clear algorithm improved image quality, increasing CR and decreasing BV in both systems. The photopeak energy resolution was 9.63% and 12.19% for DMI and DMI-DR, respectively. The time-of-flight (TOF) resolution was 377.26 ps and 552.71 ps, respectively. Compared with measurements in other centers, results were similar and showed an absolute mean relative deviation of 6% for DMI and 7% for DMI-DR overall performance results.
Conclusions: Performance measures were higher for the 4-ring DMI than the DMI-DR system. The biggest advantages of the 4-ring DMI vs DMI-DR are improved sensitivity and count rate performance. This should allow a better image signal-to-noise ratio (SNR) for the same acquisition times or, similar SNR with lower acquisition times or injected activity. In its 3-ring configuration, the DMI showed worse performance results than the PMT-based system in terms of count rate scatter fraction and image quality (for similar axial FOV).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960280 | PMC |
http://dx.doi.org/10.1186/s40658-020-0271-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!