Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background Metastatic melanoma to the brain carries a particularly poor prognosis that may be associated with an attenuated antitumor response in the presence of central nervous system malignancies. Thus, the development of brain metastases could theoretically accelerate cancer progression both locally and systemically. Although dysregulation of checkpoint markers, such as programmed death-ligand 1 (PD-L1), programmed cell death receptor 1 (PD-1), lymphocyte activation gene 3 (LAG-3), and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), have been implicated in immune dysfunction, the exact relationship between these markers and brain tumor-mediated immune suppression remains unclear. Thus, the objective of this study was to explore whether there exists a differential expression of the above checkpoint markers in the intracranial milieu as compared to tumors in the periphery, which may shed light on the mechanism behind the diminished antitumor response. Methods We identified nine patients with extracranial melanomas and matched intracranial metastases. Formalin-fixed, paraffin-embedded slides were stained for PD-L1, PD-1, LAG-3, and TIM-3 via immunohistochemistry. Qualitative analysis was performed to assess the staining of the markers in the neoplastic and lymphocytic cells, which were the two cell lineages in each biopsy. Results Expression of PD-1 and TIM-3 between extracranial and intracranial tumoral sites was conserved. Specifically, in lymphocytes, PD-1 expression was observed in 100% of extracranial and 100% of intracranial slides, whereas TIM-3 expression was seen in 33.33% of extracranial and 33.33% of intracranial slides. Neither marker stained tumor cells, as expected. PD-L1 showed a slight variation in staining between sites, with lymphocyte staining in 100% of extracranial and 88.89% of intracranial slides, and the same percentages per site for tumor cells. The greatest variability was observed in LAG-3 lymphocyte staining, with staining in 77.78% of extracranial and 33.33% of intracranial slides. No LAG-3 staining of tumor cells was noted, as expected. Conclusion Preliminary analysis revealed the conservation of PD-L1, PD-1, LAG-3, and TIM-3 expression intra- and extracranially. This could suggest that these markers are important in maintaining an immunosuppressive phenotype at both sites. Another possibility is that this pattern of expression is associated with patients who develop brain metastasis, as this was the only subset of patients included in this study. Interestingly, LAG-3 staining of lymphocytes appeared more prominent in extracranial over intracranial tumors. Future studies should include more samples to draw out potential patterns masked by the small sample size, as well as to compare checkpoint expression in other patient groups, such as those with non-brain metastasis or those with no metastasis at all.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952042 | PMC |
http://dx.doi.org/10.7759/cureus.6352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!