Background: In order to counteract the eutrophication of waterways and reservoirs, a basic risk assessment of phosphorus (P) losses in the surface runoff from agricultural land should be included in water management plans. A new method has been developed to assess the risk of P losses by estimating the degree of P saturation (DPS) based on the P concentration of the water extract water-soluble P.

Methods: The risk of P losses in surface runoff from agricultural land in the Puck Commune on the Baltic Sea Coast was assessed with the DPS method. The results were compared to an agronomic interpretation of the soil test P concentration (STP). Research was conducted on mineral and organic soils from 50 and 11 separate agricultural plots with a total area of 133.82 and 37.23 ha, respectively. Phosphorus was extracted from the collected samples using distilled water on all soil samples, acid ammonium lactate on mineral soils, and an extract of 0.5 mol HCl·dm on organic soils. The organic matter content and pH values were also determined. The results of the P content in the water extracted from the soils were converted into DPS values, which were then classified by appropriate limit intervals.

Results And Discussion: There was a high risk of P losses from the soil via surface runoff in 96.7% of the agricultural parcels tested (96% of plots with mineral soils and 100% of plots with organic soils). Simultaneously, a large deficiency of plant-available P was found in soils from 62% of agricultural plots. These data indicate that the assessment of P concentration in soils made on the basis of an environmental soil P test conflicts with the assessment made based on STP and create a cognitive dissonance. The risk level of P losses through surface runoff from the analyzed plots as determined by the DPS indicator is uncertain. This uncertainty is increased as the DPS index is not correlated with other significant factors in P runoff losses, such as the type of crop and area inclination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953330PMC
http://dx.doi.org/10.7717/peerj.8396DOI Listing

Publication Analysis

Top Keywords

surface runoff
20
losses surface
16
runoff agricultural
12
agricultural land
12
risk losses
12
organic soils
12
phosphorus losses
8
dps indicator
8
soil test
8
soils
8

Similar Publications

An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.

View Article and Find Full Text PDF

Improving the understanding of rainfall-runoff processes: Temporal dynamic of event runoff response in Loess Plateau, China.

J Environ Manage

January 2025

School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:

Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.

View Article and Find Full Text PDF

Land use changes profoundly affect hydrological processes and water quality at various scales, necessitating a comprehensive understanding of sustainable water resource management. This paper investigates the implications of land use alterations in the Gap-Cheon watershed, analyzing data from 2012 and 2022 and predicting changes up to 2052 using the Future Land Use Simulation (FLUS) model. The study employs the Hydrological Simulation Program-FORTRAN (HSPF) model to assess water quantity and quality dynamics.

View Article and Find Full Text PDF

Assessing riparian functioning condition for improved ecosystem services: A case study of the Back Creek watershed (Virginia, USA).

J Environ Manage

January 2025

U.S. Environmental Protection Agency, Office of Research and Development, 960 College Station Rd., Athens, GA, 30605, USA. Electronic address:

Riparian functioning condition refers to a rating and description of the current ecological status of a reach of a riparian ecosystem in consideration of its potential hydrology, vegetation, and geomorphology. Reach rating options are Proper Functioning Condition (PFC), Functional-At-Risk (FAR), Non-Functional, and apparent or monitored trends. We assessed the functioning condition of flowing riverbank areas of Back Creek located in Virginia (USA) following a PFC protocol developed by the U.

View Article and Find Full Text PDF

Dry wells are neighborhood-scale stormwater infiltration systems increasingly used in drought-prone areas for stormwater capture and groundwater recharge. These systems bypass the low permeability surface soil to maximize infiltration rates. However, hydrophilic contaminants of emerging concern (CECs) in urban runoff pose potential groundwater contamination risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!