Numerous studies have shown that the genetic diversity of species inhabiting temperate regions has been shaped by changes in their distributions during the Quaternary climatic oscillations. For some species, the genetic distinctness of isolated populations is maintained during secondary contact, while for others, admixture is frequently observed. For the winter moth (), an important defoliator of oak forests across Europe and northern Africa, we previously determined that contemporary populations correspond to genetic diversity obtained during the last glacial maximum (LGM) through the use of refugia in the Iberian and Aegean peninsulas, and to a lesser extent the Caucasus region. Missing from this sampling were populations from the Italian peninsula and from North Africa, both regions known to have played important roles as glacial refugia for other species. Therefore, we genotyped field-collected winter moth individuals from southern Italy and northwestern Tunisia-the latter a region where severe oak forest defoliation by winter moth has recently been reported-using polymorphic microsatellite. We reconstructed the genetic relationships of these populations in comparison to moths previously sampled from the Iberian and Aegean peninsulas, the Caucasus region, and western Europe using genetic distance, Bayesian clustering, and approximate Bayesian computation (ABC) methods. Our results indicate that both the southern Italian and the Tunisian populations are genetically distinct from other sampled populations, and likely originated in their respective refugium during the LGM after diverging from a population that eventually settled in the Iberian refugium. These suggest that winter moth populations persisted in at least five Mediterranean LGM refugia. Finally, we comment that outbreaks by winter moth in northwestern Tunisia are not the result of a recent introduction of a nonnative species, but rather are most likely due to land use or environmental changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953680PMC
http://dx.doi.org/10.1002/ece3.5830DOI Listing

Publication Analysis

Top Keywords

winter moth
24
north africa
8
italian peninsula
8
glacial maximum
8
genetic diversity
8
lgm refugia
8
iberian aegean
8
aegean peninsulas
8
caucasus region
8
populations
7

Similar Publications

Seasonal Migratory Activity of the Beet Armyworm (Hübner) in the Tropical Area of China.

Insects

December 2024

The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.

View Article and Find Full Text PDF

Recent changes in climate and environments have promoted the range expansion of insect pests of tropical and subtropical origins into temperate regions. For more accurate and faster risk assessment of this expansion, we developed a novel indicator to link a physiologically derived parameter of chilling injury with the survival of insect populations in nature by using two insects, Spodoptera frugiperda and Cicadulina bipunctata with tropical and subtropical origins, and one cool-adapted insect, Laodelphax striatellus. The parameter derived from a proportional increment in the time to 99.

View Article and Find Full Text PDF

Heliozela pitangavora Moreira & Fochezato sp. nov. (Lepidoptera: Heliozelidae): a leaf miner micromoth associated with Eugenia uniflora L. (Myrtaceae) in southern Brazil.

Zootaxa

August 2024

PPG Biologia Animal; Departamento de Zoologia; Instituto de Biociências; Universidade Federal do Rio Grande do Sul; Av. Bento Gonçalves 9500; 91501-970 Porto Alegre; RS; Brazil; Instituto Uiraçú; Reserva Serra Bonita; Camacan; BA; Brazil.

Heliozela pitangavora Moreira & Fochezato sp. nov. (Lepidoptera: Adeloidea: Heliozelidae), a leaf miner of Eugenia uniflora L.

View Article and Find Full Text PDF

Trophic generalism in the winter moth: a model species for phenological mismatch.

Oecologia

December 2024

Ashworth Laboratories, Institute for Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom.

Article Synopsis
  • Climate change may disrupt the timing of interactions between species, such as winter moth caterpillars and oak trees, as caterpillars may advance their lifecycle more than the trees.
  • A large study involving over 3500 caterpillars showed that these pests perform well on various host plants, suggesting that adaptability to different plants can mitigate negative effects of mismatched timing.
  • Contrary to common belief, oaks may not be the best host for these caterpillars, indicating that a broad diet could help them cope with changes in plant availability due to climate change.
View Article and Find Full Text PDF

Neuropeptide Bursicon and its receptor-mediated the transition from summer-form to winter-form of .

Elife

November 2024

Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.

Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor regulate the transition from summer-form to winter-form in by impacting cuticle content and thickness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!