A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heat tolerance and acclimation capacity in subterranean arthropods living under common and stable thermal conditions. | LitMetric

Cave-dwelling ectotherms, which have evolved for millions of years under stable thermal conditions, could be expected to have adjusted their physiological limits to the narrow range of temperatures they experience and to be highly vulnerable to global warming. However, most of the few existing studies on thermal tolerance in subterranean invertebrates highlight that despite the fact that they show lower heat tolerance than most surface-dwelling species, their upper thermal limits are generally not adjusted to ambient temperature. The question remains to what extent this pattern is common across subterranean invertebrates. We studied basal heat tolerance and its plasticity in four species of distant arthropod groups (Coleoptera, Diplopoda, and Collembola) with different evolutionary histories but under similar selection pressures, as they have been exposed to the same constant environmental conditions for a long time. Adults were exposed at different temperatures for 1 week to determine upper lethal temperatures. Then, individuals from previous sublethal treatments were transferred to a higher temperature to determine acclimation capacity. Upper lethal temperatures of three of the studied species were similar to those reported for other subterranean species (between 20 and 25°C) and widely exceeded the cave temperature (13-14°C). The diplopod species showed the highest long-term heat tolerance detected so far for a troglobiont (i.e., obligate subterranean) species (median lethal temperature after 7 days exposure: 28°C) and a positive acclimation response. Our results agree with previous studies showing that heat tolerance in subterranean species is not determined by environmental conditions. Thus, subterranean species, even those living under similar climatic conditions, might be differently affected by global warming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953556PMC
http://dx.doi.org/10.1002/ece3.5782DOI Listing

Publication Analysis

Top Keywords

heat tolerance
20
subterranean species
16
acclimation capacity
8
stable thermal
8
thermal conditions
8
global warming
8
tolerance subterranean
8
subterranean invertebrates
8
species
8
environmental conditions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!