Ketamine abuse has dramatically increased in recently years. With the widely application of ketamine, its side effects, especially cystitis induced by long-term use, have attracted more and more attention from the public. In the present study, we aimed to explore the potential generative mechanism of ketamine-induced cystitis by determining the endogenous metabolites at different time points after ketamine treatment. Body weight, bladder/body coefficient, urinary frequency, urinary potassium, serum IL-6, and TNF-α were determined at different time points after ketamine treatment. H&E staining was used to observe the changes of histopathology. Metabonomics was performed to determine the changes of endogenous metabolites. After 12 weeks of treatment, obvious inflammatory reaction was noticed in the KET group; the body weight and urinary potassium of the KET group were significantly lower than the NS group (P < 0.05) and other factors, such as urinary frequency, bladder/body coefficient, serum TNF-α and IL-6 were higher than the NS group (P < 0.05). A total of 30, 28, and 32 significantly changed metabolites were identified at the 1st week, 4th week and 12th week, respectively. Metabolic pathway analysis showed that different metabolic pathways were affected during the treatment process. Linoleic acid metabolism, beta-alanine metabolism, glyoxylate and dicarboxylate metabolism were only affected following long-term administration of ketamine. Those metabolic pathways may have a close relationship with cystitis induced by ketamine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958055PMC

Publication Analysis

Top Keywords

ketamine-induced cystitis
8
cystitis induced
8
endogenous metabolites
8
time points
8
points ketamine
8
ketamine treatment
8
body weight
8
bladder/body coefficient
8
urinary frequency
8
urinary potassium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!