MicroRNAs (miRs) dysregulation has been proven to play a crucial role in the initiation and progression of colorectal cancer (CRC). miR-9 functions as a tumor suppressor in many cancer types, including CRC. However, the precise role of miR-9 and the underlying molecular mechanisms that miR-9 involves in CRC progression remain largely unknown. In this study, it was reported that miR-9 had lower expression in CRC tissue samples than in those matched adjacent non-tumor tissues. Deregulated miR-9 expression was inverse correlated with the TNM stage, lymph node metastasis, and prognosis of CRC patients. Ectopic miR-9 expression suppressed CRC cell proliferation, migration, and invasion. Dual-Luciferase Reporter Assay confirmed that C-X-C Motif Chemokine Receptor 4 (CXCR4) was a direct miR-9 target, and the effects of miR-9 were mimicked through CXCR4 depletion . CXCR4 rescue experiments further verified that CXCR4 is a functional target of miR-9. Animal xenograft assays also provided evidence that miR-9 functions as a tumor suppressor via targeting CXCR4 . Mechanistically, miR-9 overexpression or CXCR4 knockdown influenced cell proliferation and epithelial-mesenchymal transition (EMT). Results suggest that miR-9 acts as a tumor suppressor in CRC progression by regulating CXCR4.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958006 | PMC |
Cells
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out by two main isoforms that regulate cell proliferation and senescence. p63 also controls the epigenome by regulating interactions with histone modulators, such as the histone acetyltransferase p300, deacetylase HDAC1/2, and DNA methyltransferases.
View Article and Find Full Text PDFCancer Med
January 2025
Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon.
Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.
View Article and Find Full Text PDFCurr Protoc
January 2025
Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
Mesothelioma is a lethal cancer of the serosal lining of the body cavities. Risk factors include environmental and genetic factors. Asbestos exposure is considered the principal environmental risk factor, but other carcinogenic mineral fibers, such as erionite, also have a causal role.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
Hum Cell
January 2025
Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!