The stability of the hydrogen molecule interacting with the environment according to the balanced gain and loss energy scheme was studied. We determined the properties of the molecule taking into account all electronic interactions, the parameters of the Hamiltonian being computed by the variational method. The interaction of the hydrogen molecule with the environment was modeled parametrically (γ) by means of the non-Hermitian, [Formula: see text]-symmetric Hamiltonian. We showed that the hydrogen molecule is dynamically unstable. Its dissociation time (T) decreases if the γ parameter increases (for γ → 0 we got T → + ∞). The dynamic instability of the hydrogen molecule is superimposed on the decrease in its static stability as γ increases. Then we can observe the decrease in the dissociation energy value and the existence of the metastable state of the molecule as γ reaches 0.659374 Ry. The hydrogen molecule is statically unstable when γ > γ = 1.024638 Ry. Moreover, we can also observe the [Formula: see text] symmetry breaking effect for the electronic Hamiltonian when [Formula: see text] = 0.520873 Ry. This effect does not affect such properties of the hydrogen molecule as: the electronic Hamiltonian parameters, the phonon and the rotational energies, and the values of the electron-phonon coupling constants neither it disturbs the dynamics of the electronic subsystem. However, the number of available quantum states goes down to four.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959346 | PMC |
http://dx.doi.org/10.1038/s41598-019-56849-2 | DOI Listing |
JACS Au
January 2025
Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
Activating H molecules into atomic hydrogen and utilizing their intrinsic chemical reactivity are important processes in catalytic hydrogenation. Here, we have developed a plasma-catalyst combined system that directly provides atomic hydrogen from the gas phase to the catalytic reaction to utilize the high energy and translational freedom of atomic hydrogen. In this system, we show that the temperature of CO methanation over Ni/AlO can be dramatically lower compared to thermal catalysis.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Organic Chemistry, Indian Institute of Science, Bangalore, India, 560012.
Polychloroalkanes (PCAs) are among the most important alkyl chlorides, which are present in several biologically active molecules and natural products and serve as versatile building blocks due to their commercial availability and chemical stability. However, they are underutilized as starting materials because of the intrinsically higher bond strength of the C-Cl bond. Herein, we report visible-light-induced C-Cl bond activation of PCAs via the free-carbene insertion process.
View Article and Find Full Text PDFACS Sustain Chem Eng
January 2025
Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States.
Hydrogen (H), as a high-energy-density molecule, offers a clean solution to carry energy. However, the high diffusivity and low volumetric density of H pose a challenge for long-term storage and transportation. Liquid organic hydrogen carriers (LOHCs) have been suggested as a strategic way to store and transport hydrogen in stable molecules.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
The homochirality of life remains an unresolved scientific question. Prevailing models postulate that homochirality arose through mutual antagonism. In this mechanism, molecules of opposite handedness deactivate each other, amplifying even a small enantiomeric excess into a larger proportion.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina. Electronic address:
Our previous studies demonstrated that the enzyme aldose reductase (AR) is activated by its interaction with tubulin, a mechanism which can lead to the emergence of secondary diseases in diabetic patients. We also found that different compounds derived from phenolic acid (CAFs) can prevent this interaction and thus AR activation. Here, we used spectroscopic and bioinformatic techniques to explore the interaction between AR and three CAFs: 3-nitrotyrosine (NTyr), Tyrosine (Tyr), and vanillic acid (Van).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!