Alcohol abuse and alcohol dependence are key factors in the development of alcohol use disorder, which is a pervasive societal problem with substantial economic, medical, and psychiatric consequences. Although our understanding of the neurocircuitry that underlies alcohol use has improved, novel brain regions that are involved in alcohol use and novel biomarkers of alcohol use need to be identified. The present study used a single-cell whole-brain imaging approach to 1) assess whether abstinence from alcohol in an animal model of alcohol dependence alters the functional architecture of brain activity and modularity, 2) validate our current knowledge of the neurocircuitry of alcohol abstinence, and 3) discover brain regions that may be involved in alcohol use. Alcohol abstinence resulted in the whole-brain reorganization of functional architecture in mice and a pronounced decrease in modularity that was not observed in nondependent moderate drinkers. Structuring of the alcohol abstinence network revealed three major brain modules: 1) extended amygdala module, 2) midbrain striatal module, and 3) cortico-hippocampo-thalamic module, reminiscent of the three-stage theory. Many hub brain regions that control this network were identified, including several that have been previously overlooked in alcohol research. These results identify brain targets for future research and demonstrate that alcohol use and dependence remodel brain-wide functional architecture to decrease modularity. Further studies are needed to determine whether the changes in coactivation and modularity that are associated with alcohol abstinence are causal features of alcohol dependence or a consequence of excessive drinking and alcohol exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994986PMC
http://dx.doi.org/10.1073/pnas.1909915117DOI Listing

Publication Analysis

Top Keywords

alcohol dependence
20
alcohol
18
functional architecture
16
alcohol abstinence
16
brain regions
12
brain-wide functional
8
abstinence alcohol
8
regions involved
8
involved alcohol
8
decrease modularity
8

Similar Publications

Objective: Preventing return to alcohol is of critical importance for patients with alcohol-related cirrhosis and/or alcohol-associated hepatitis. Acamprosate is a widely used treatment for alcohol use disorder (AUD). We assessed the impact of acamprosate prescription in patients with advanced liver disease on abstinence rates and clinical outcomes.

View Article and Find Full Text PDF

Serious alcohol-associated hazards underscore the need to develop new biomarkers reflecting the biological changes caused by chronic alcohol use and predicting the risk of alcohol-related death. Oxidative stress is one mechanism of alcohol toxicity. The blood and urine redox status (total antioxidant capacity [TAC], total oxidative status [TOS], and oxidative stress index [OSI]) was assessed in 105 people who died a sudden death (controls), 47 people who died of alcohol overdose, and 102 people with alcohol dependency.

View Article and Find Full Text PDF

Photobiomodulation using an 830-nm laser alleviates hippocampal reactive gliosis and cognitive dysfunction in a mouse model of adolescent chronic alcohol exposure.

Pharmacol Biochem Behav

January 2025

Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea. Electronic address:

Chronic alcoholism is known to have detrimental effects on the brain, including cognitive impairment, neurotransmitter imbalances, and brain atrophy. The hippocampus, crucial for spatial memory and cognitive functions, is particularly susceptible to alcohol-induced changes. Photobiomodulation (PBM), a non-invasive therapeutic method that utilizes red or near-infrared light, has shown promising applications in the central and peripheral nervous systems.

View Article and Find Full Text PDF

Effects of Aminooxyacetic Acid on Learning and Memory Function and Neurochemical Changes in Chronic Alcoholism.

Brain Res Bull

January 2025

Sino-UK International Joint Laboratory of Brain Injury in Henan Province, Henan International Joint Laboratory of Neuromodulation, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China. Electronic address:

Objective: This study aimed to investigate the effect of aminooxyacetic acid (AOAA) on cognitive function, particularly learning and memory, in a rat model of chronic alcoholism. Additionally, the study explored changes in cystathionine β-synthase (CBS), hydrogen sulfide (H₂S), and serotonin (5-HT) levels in the prefrontal cortex to understand the potential neurochemical mechanisms involved.

Methods: Sixty-four male SD rats were randomly divided into four groups, with 16 rats in each: Con, Con + AOAA, Model, and Model + AOAA.

View Article and Find Full Text PDF

Introduction: There is strong evidence of the substance dependence has a negative impact on key dimensions of health. The scientific evidence suggests that pharmacological treatment could play a fundamental role in its clinical management.

Objective: The aim of this systematic review is to explore the existing pharmacological options for the treatment of substance use disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!