Neuronal mitochondria dysfunction and neuroinflammation are two prominent pathological features increasingly realized as important pathogenic mechanisms for neurodegenerative diseases. However, little attempt has been taken to investigate the likely interactions between them. Mitofusin2 (Mfn2) is a mitochondrial outer membrane protein regulating mitochondrial fusion, a dynamic process essential for mitochondrial function. To explore the significance of neuronal mitochondria in the regulation of neuroinflammation, male and female transgenic mice with forced overexpression of Mfn2 specifically in neurons were intraperitoneally injected with lipopolysaccharide (LPS), a widely used approach to model neurodegeneration-associated neuroinflammation. Remarkably, LPS-induced lethality was almost completely abrogated in neuronal Mfn2 overexpression mice. Compared with nontransgenic wild-type mice, mice with neuronal Mfn2 overexpression also exhibited alleviated bodyweight loss, behavioral sickness, and myocardial dysfunction. LPS-induced release of IL-1β but not TNF-α was further found greatly inhibited in the CNS of mice with neuronal Mfn2 overexpression, whereas peripheral inflammatory responses in the blood, heart, lung, and spleen remained unchanged. At the cellular and molecular levels, neuronal Mfn2 suppressed the activation of microglia, prevented LPS-induced mitochondrial fragmentation in neurons, and importantly, upregulated the expression of CX3CL1, a unique chemokine constitutively produced by neurons to suppress microglial activation. Together, these results reveal an unrecognized possible role of neuronal mitochondria in the regulation of microglial activation, and propose neuronal Mfn2 as a likely mechanistic linker between neuronal mitochondria dysfunction and neuroinflammation in neurodegeneration. Our study suggests that Mfn2 in neurons contributes to the regulation of neuroinflammation. Based on the remarkable suppression of LPS-induced neuroinflammation and neurodegeneration-associated mitochondrial dysfunction and dynamic abnormalities by neuronal Mfn2, this study centered on Mfn2-mediated neuroinflammation reveals novel molecular mechanisms that are involved in both mitochondrial dysfunction and neuroinflammation in neurodegenerative diseases. The pharmacological targeting of Mfn2 may present a novel treatment for neuroinflammation-associated diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046320PMC
http://dx.doi.org/10.1523/JNEUROSCI.2324-19.2020DOI Listing

Publication Analysis

Top Keywords

neuronal mfn2
24
neuronal mitochondria
20
dysfunction neuroinflammation
12
mfn2 overexpression
12
neuronal
11
mfn2
10
neuroinflammation
9
lps-induced neuroinflammation
8
mitochondria dysfunction
8
neurodegenerative diseases
8

Similar Publications

Interpreting the role of epigallocatechin-3-gallate in Epstein-Barr virus infection-mediated neuronal diseases.

Folia Microbiol (Praha)

January 2025

Infection Bioengineering Group, POD 1B-602, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.

The increasing prevalence of neurodegenerative diseases is a formidable task due to their multifactorial causation and treatments limited to disease maintenance and progression. Epstein-Barr virus (EBV) is reported to be involved with neuropathologies; previous studies from our group suggested the effective binding of epigallocatechin-3-gallate (EGCG) with EBV nuclear antigen 1 (EBNA1) and glycoprotein H (gH). Therefore, in the current study, we evaluated the anti-EBV effect of ECGG on the neuronal cells.

View Article and Find Full Text PDF

Naotaifang formula regulates Drp1-induced remodeling of mitochondrial dynamics following cerebral ischemia-reperfusion injury.

Free Radic Biol Med

January 2025

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China. Electronic address:

Cerebral ischemia-reperfusion injury (CIRI) has emerged as a hindrance for rehabilitation of ischemic stroke patients. Naotaifang (NTF) exhibits beneficial efficacy in alleviating inflammation and ferroptosis in vitro during CIRI. While the potential role of NTF in regulating mitochondrial dynamics in CIRI are not elucidated.

View Article and Find Full Text PDF

Rg1 improves Alzheimer's disease by regulating mitochondrial dynamics mediated by the AMPK/Drp1 signaling pathway.

J Ethnopharmacol

January 2025

Hubei University of Chinese Medicine, Basic Medical College, Wuhan, Hubei, 430070, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Wuhan, Hubei, 430070, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430070, China. Electronic address:

Ethnopharmacological Relevance: Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a complex pathogenesis that includes Aβ deposition, abnormal phosphorylation of tau protein, chronic neuroinflammation, and mitochondrial dysfunction. In traditional medicine, ginseng is revered as the 'king of herbs'. Ginseng has the effects of greatly tonifying vital energy, strengthening the spleen and benefiting the lungs, generating fluids and nourishing the blood, and calming the mind while enhancing intelligence.

View Article and Find Full Text PDF

Exosomes from IH- Induced bEnd3 Cells Promote OSA Cognitive Impairment via miR-20a-5p/MFN2 Mediated Pyroptosis of HT22 Cells.

Nat Sci Sleep

December 2024

Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.

Background: OSA can cause cognitive impairment (CI). The aim of this study was to investigate whether miR-20a-5p in exosomes derived from bEnd3 cells with IH mediates intercellular crosstalk and induces CI through hippocampal neuronal cell pyroptosis.

Materials And Methods: BEnd3-derived exosomes were isolated from the normal oxygen control group (NC-EXOS) and IH group (IH-EXOS).

View Article and Find Full Text PDF

Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!