Background: The difficulty of assessment of neoadjuvant chemotherapeutic response preoperatively may hinder personalized-medicine strategies that depend on the results from pathological examination.

Methods: A total of 191 patients with high-grade osteosarcoma (HOS) were enrolled retrospectively from November 2013 to November 2017 and received neoadjuvant chemotherapy (NCT). A cutoff time of November 2016 was used to divide the training set and validation set. All patients underwent diagnostic CTs before and after chemotherapy. By quantifying the tumor regions on the CT images before and after NCT, 540 delta-radiomic features were calculated. The interclass correlation coefficients for segmentations of inter/intra-observers and feature pair-wise correlation coefficients (Pearson) were used for robust feature selection. A delta-radiomics signature was constructed using the lasso algorithm based on the training set. Radiomics signatures built from single-phase CT were constructed for comparison purpose. A radiomics nomogram was then developed from the multivariate logistic regression model by combining independent clinical factors and the delta-radiomics signature. The prediction performance was assessed using area under the ROC curve (AUC), calibration curves and decision curve analysis (DCA).

Results: The delta-radiomics signature showed higher AUC than single-CT based radiomics signatures in both training and validation cohorts. The delta-radiomics signature, consisting of 8 selected features, showed significant differences between the pathologic good response (pGR) (necrosis fraction ≥90%) group and the non-pGR (necrosis fraction < 90%) group (P < 0.0001, in both training and validation sets). The delta-radiomics nomogram, which consisted of the delta-radiomics signature and new pulmonary metastasis during chemotherapy showed good calibration and great discrimination capacity with AUC 0.871 (95% CI, 0.804 to 0.923) in the training cohort, and 0.843 (95% CI, 0.718 to 0.927) in the validation cohort. The DCA confirmed the clinical utility of the radiomics model.

Conclusion: The delta-radiomics nomogram incorporating the radiomics signature and clinical factors in this study could be used for individualized pathologic response evaluation after chemotherapy preoperatively and help tailor appropriate chemotherapy and further treatment plans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958668PMC
http://dx.doi.org/10.1186/s40644-019-0283-8DOI Listing

Publication Analysis

Top Keywords

delta-radiomics signature
16
neoadjuvant chemotherapy
8
high-grade osteosarcoma
8
training set
8
correlation coefficients
8
radiomics signatures
8
necrosis fraction
8
delta-radiomics
5
delta-radiomics model
4
model preoperative
4

Similar Publications

Objective: To assess the efficacy of computed tomography (CT)-based radiomics nomogram in predicting perineural invasion (PNI) in patients with hypopharyngeal squamous cell carcinoma (HPSCC).

Materials And Methods: Overall, 146 patients were retrospectively recruited and divided into training and test cohorts at a 7:3 ratio. Radiomics features were extracted and delta and absolute delta radiomics features were calculated.

View Article and Find Full Text PDF

Longitudinal CT Radiomics to Predict Progression-free Survival in Patients with Locally Advanced Gastric Cancer After Neoadjuvant Chemotherapy.

Acad Radiol

December 2024

Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China (B.W., X.H., Z.Z., Z.L., S.L.). Electronic address:

Rationale And Objectives: To develop and validate a radiomics signature, utilizing baseline and restaging CT, for preoperatively predicting progression-free survival (PFS) after neoadjuvant chemotherapy (NAC) in locally advanced gastric cancer (LAGC).

Methods: A total of 316 patients with LAGC who received NAC followed by gastrectomy were retrospectively included in this single-center study; these patients were split into two cohorts, one for training (n = 243) and the other for validation (n = 73), based on the different districts of our hospital. A total of 1316 radiomics features were extracted from the volume of interest of the gastric-cancer lesion on venous phase CT images.

View Article and Find Full Text PDF

Purpose: Effective identification of malignant part-solid lung nodules is crucial to eliminate risks due to therapeutic intervention or lack thereof. We aimed to develop delta radiomics and volumetric signatures, characterize changes in nodule properties over three presurgical time points, and assess the accuracy of nodule invasiveness identification when combined with immediate presurgical time point radiomics signature and clinical biomarkers.

Materials And Methods: Cohort included 156 part-solid lung nodules with immediate presurgical CT scans and a subset of 122 nodules with scans at 3 presurgical time points.

View Article and Find Full Text PDF

Delta magnetic resonance imaging radiomics features‑based nomogram predicts long‑term efficacy after induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma.

Oral Oncol

October 2024

Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China. Electronic address:

Purpose: To establish and validate a delta-radiomics-based model for predicting progression-free survival (PFS) in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC) following induction chemotherapy (IC).

Methods And Materials: A total of 250 LA-NPC patients (training cohort: n = 145; validation cohort: n = 105) were enrolled. Radiomic features were extracted from MRI scans taken before and after IC, and changes in these features were calculated.

View Article and Find Full Text PDF

Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, we performed an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib in (experimental) fibrosing ILD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!