A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Quantitative Method for Acesulfame K Using the Taste Sensor. | LitMetric

A Quantitative Method for Acesulfame K Using the Taste Sensor.

Sensors (Basel)

Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Published: January 2020

We have developed a method to quantify the sweetness of negatively charged high-potency sweeteners coexisting with other taste substances. This kind of sweetness sensor uses lipid polymer membranes as the taste-sensing part. Two types of outputs have been defined in the measurement of the taste sensor: one is the relative value and the other is the CPA (the change in membrane potential caused by adsorption) value. The CPA value shows a good selectivity for high-potency sweeteners. On the other hand, the relative value is several times higher than the CPA value, but the relative value is influenced by salty substances. In order to obtain both high sensitivity and selectivity, we established a model for predicting the concentration of sweeteners with a nonlinear regression analysis method using the relative values of both the sweetness sensor and the saltiness sensor. The analysis results showed good correlations with the estimated concentration of acesulfame potassium coexisting with salty substances, as represented by = 0.99. This model can correspond well to the prediction of acesulfame K in a concentration of 0.2-0.7 mM, which is commonly used in food and beverages. The results obtained in this paper suggest that this method is useful for the evaluation of acesulfame K using the taste sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014247PMC
http://dx.doi.org/10.3390/s20020400DOI Listing

Publication Analysis

Top Keywords

acesulfame taste
8
taste sensor
8
high-potency sweeteners
8
sweetness sensor
8
salty substances
8
sensor
5
quantitative method
4
acesulfame
4
method acesulfame
4
taste
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!