Photosynthetic Metabolism under Stressful Growth Conditions as a Bases for Crop Breeding and Yield Improvement.

Plants (Basel)

Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Av. Pamplona 123, 31192 Mutilva, Spain.

Published: January 2020

Increased periods of water shortage and higher temperatures, together with a reduction in nutrient availability, have been proposed as major factors that negatively impact plant development. Photosynthetic CO assimilation is the basis of crop production for animal and human food, and for this reason, it has been selected as a primary target for crop phenotyping/breeding studies. Within this context, knowledge of the mechanisms involved in the response and acclimation of photosynthetic CO assimilation to multiple changing environmental conditions (including nutrients, water availability, and rising temperature) is a matter of great concern for the understanding of plant behavior under stress conditions, and for the development of new strategies and tools for enhancing plant growth in the future. The current review aims to analyze, from a multi-perspective approach (ranging across breeding, gas exchange, genomics, etc.) the impact of changing environmental conditions on the performance of the photosynthetic apparatus and, consequently, plant growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020424PMC
http://dx.doi.org/10.3390/plants9010088DOI Listing

Publication Analysis

Top Keywords

photosynthetic assimilation
8
changing environmental
8
environmental conditions
8
plant growth
8
photosynthetic
4
photosynthetic metabolism
4
metabolism stressful
4
stressful growth
4
conditions
4
growth conditions
4

Similar Publications

A Zinc Polyphenolic Compound Increases Maize Resistance Against Infection by .

Plants (Basel)

December 2024

Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.

Maize leaf blight (MLB), caused by the fungus , is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes.

View Article and Find Full Text PDF

Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (), a representative C4 plant, cultivated hydroponically over 14 days.

View Article and Find Full Text PDF

Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions.

Plant Cell Environ

January 2025

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).

View Article and Find Full Text PDF

Photoheterotrophic extracellular reduction of ferrihydrite activates diverse intracellular metabolic pathways in Rhodopseudomonas palustris for enhanced antibiotic degradation.

Water Res

January 2025

Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R.

View Article and Find Full Text PDF

Engineering carbon assimilation in plants.

J Integr Plant Biol

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO, is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin-Benson-Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!