The stem cells located in the hair follicle bulge area are critical for skin regeneration and repair. To date, little is known about the evolution of the transcriptome of these cells across time. Here, we have combined genome-wide expression analyses and a variety of in silico tools to determine the age-dependent evolution of the transcriptome of those cells. Our results reveal that the transcriptome of skin stem cells fluctuates extensively along the lifespan of mice. The use of both unbiased and pathway-centered in silico approaches has also enabled the identification of biological programs specifically regulated at those specific time-points. It has also unveiled hubs of highly transcriptionally interconnected genes and transcriptional factors potentially located at the core of those age-specific changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016981 | PMC |
http://dx.doi.org/10.3390/cells9010165 | DOI Listing |
Life Med
October 2024
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.
The ovary plays a crucial role in the reproductive system of female mammals by producing mature oocytes through folliculogenesis. Non-human model organisms are extensively utilized in research on human ovarian biology, thus necessitating the investigation of conservation and divergence in molecular mechanisms across species. In this study, we employed integrative single-cell analysis of transcriptome and chromatin accessibility to identify the evolutionary conservation and divergence patterns of ovaries among humans, monkeys, mice, rats, and rabbits.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Botany, University of Delhi, Delhi, India.
Bryophytes represent a diverse and species-rich group of plants, characterized by a remarkable array of morphological variations. Due to their significant ecological and economic roles worldwide, accurate identification of bryophyte taxa is crucial. However, the variability in morphological traits often complicates their proper identification and subsequent commercial utilization.
View Article and Find Full Text PDFThyroid
January 2025
Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Republic of Korea.
Although patients with anaplastic thyroid cancer (ATC) generally have a poor prognosis and there are currently no effective treatment options, survival and response to therapy vary between patients. Genomic and transcriptomic profiles of ATC have been reported; however, a comprehensive study of the tumor microenvironment (TME) of ATC is still lacking. This study aimed to elucidate the TME characteristics associated with ATC and their prognostic implications.
View Article and Find Full Text PDFPlant J
January 2025
College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.
The traditional Chinese medicinal plant Prunella vulgaris contains numerous triterpene saponin metabolites, notably ursolic and oleanolic acid saponins, which have significant pharmacological values. Despite their importance, the genes responsible for synthesizing these triterpene saponins in P. vulgaris remain unidentified.
View Article and Find Full Text PDFSensory neurons must be reproducibly specified to permit accurate neural representation of external signals but also able to change during evolution. We studied this paradox in the olfactory system by establishing a single-cell transcriptomic atlas of all developing antennal sensory lineages, including latent neural populations that normally undergo programmed cell death (PCD). This atlas reveals that transcriptional control is robust, but imperfect, in defining selective sensory receptor expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!