An environmental thermal comfort model has previously been quantified based on the predicted mean vote (PMV) and the physical sensors parameters, such as temperature, relative humidity, and air speed in the indoor environment. However, first, the relationship between environmental factors and physiology parameters of the model is not well investigated in the smart home domain. Second, the model that is not mainly for an individual human model leads to the failure of the thermal comfort system to fulfill the human's comfort preference. In this paper, a cyber-physical human centric system (CPHCS) framework is proposed to take advantage of individual human thermal comfort to improve the human's thermal comfort level while optimizing the energy consumption at the same time. Besides that, the physiology parameter from the heart rate is well-studied, and its correlation with the environmental factors, i.e., PMV, air speed, temperature, and relative humidity are deeply investigated to reveal the human thermal comfort level of the existing energy efficient thermal comfort control (EETCC) system in the smart home environment. Experimental results reveal that there is a tight correlation between the environmental factors and the physiology parameter (i.e., heart rate) in the aspect of system operational and human perception. Furthermore, this paper also concludes that the current EETCC system is unable to provide the precise need for thermal comfort to the human's preference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014145 | PMC |
http://dx.doi.org/10.3390/s20020372 | DOI Listing |
J Therm Biol
January 2025
School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag X3, Wits, 2050, South Africa. Electronic address:
Questionnaires exploring tourists' perceptions of ideal climatic conditions are argued to be a more suitable data source for the development of tourism climate indices than the utilization and integration of expert opinion and pre-established thresholds. This assumes that those tourist respondents can accurately quantify meteorological conditions at a given point in time, and effectively discriminate between meteorological thresholds of suitable and unsuitable conditions. For variables such as rainfall and sunshine hours, this assumption is fairly reasonable.
View Article and Find Full Text PDFPLoS One
January 2025
Crop Research Institute, Prague, Ruzyně, Czech Republic.
The assessment of human perception of the thermal environment is becoming highly relevant in the context of global climate change and its impact on public health. In this study, we aimed to evaluate the suitability of the use of four frequently used thermal comfort indices (thermal indices)-Wet Bulb Global Temperature (WGBT), Heat Index (HI), Physiologically Equivalent Temperature (PET), and Universal Thermal Climate Index (UTCI)-to assess human thermal comfort perception in three large urban parks in Central Europe, using Prague, the capital of the Czech Republic, as a case study. We investigated the relationship between the four indices and the thermal perception of park visitors, while taking into account the effect of the sex, age, and activity of the respondents and the week-time and daytime of their visit (assessed parameters).
View Article and Find Full Text PDFSci Rep
January 2025
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.
This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.
View Article and Find Full Text PDFClin Ophthalmol
January 2025
Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
Background: Meibomian gland dysfunction (MGD) is a primary cause of evaporative dry eye disease (DED), which is often exacerbated by cataract surgery due to surgical trauma and inflammation. Thermal pulsation therapy (TPT) aims to enhance meibomian gland function and relieve dry eye symptoms. We conducted a systematic review and meta-analysis to evaluate the effectiveness of TPT in managing dry eye symptoms associated with cataract surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!