Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action.

Int J Environ Res Public Health

Department of Food Science and Agricultural Chemistry MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada.

Published: January 2020

There are presently more than 18 known aflatoxins most of which have been insufficiently studied for their incidence, health-risk, and mechanisms of toxicity to allow effective intervention and control means that would significantly and sustainably reduce their incidence and adverse effects on health and economy. Among these, aflatoxin B1 (AFB1) has been by far the most studied; yet, many aspects of the range and mechanisms of the diseases it causes remain to be elucidated. Its mutagenicity, tumorigenicity, and carcinogenicity-which are the best known-still suffer from limitations regarding the relative contribution of the oxidative stress and the reactive epoxide derivative (Aflatoxin-exo 8,9-epoxide) in the induction of the diseases, as well as its metabolic and synthesis pathways. Additionally, despite the well-established additive effects for carcinogenicity between AFB1 and other risk factors, e.g., hepatitis viruses B and C, and the hepatotoxic algal microcystins, the mechanisms of this synergy remain unclear. This study reviews the most recent advances in the field of the mechanisms of toxicity of aflatoxins and the adverse health effects that they cause in humans and animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013914PMC
http://dx.doi.org/10.3390/ijerph17020423DOI Listing

Publication Analysis

Top Keywords

mechanisms toxicity
8
mechanisms
5
chronic acute
4
acute toxicities
4
toxicities aflatoxins
4
aflatoxins mechanisms
4
mechanisms action
4
action presently
4
presently aflatoxins
4
aflatoxins insufficiently
4

Similar Publications

Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.

View Article and Find Full Text PDF

The clinical impact of chronopharmacology on current medicine.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey.

One of the goals of clinical pharmacology is to optimize patient treatment by adopting new treatment strategies which will increase the efficacy of the treatment and decrease the adverse effects of the drugs. In the literature, it has shown that the effectiveness and toxicity of medications can vary significantly based on when they are administered, making timing a crucial factor in treatment plans. Chronopharmacology a relatively new branch of clinical pharmacology focuses on adjusting drug administration times to enhance patient outcomes.

View Article and Find Full Text PDF

Background And Aims: Increased intestinal permeability exacerbates the development of metabolic dysfunction associated steatohepatitis (MASH), but the underlying mechanisms remain unclear. Autophagy is important for maintaining normal intestinal permeability. Here, we investigated the impact of intestinal transcription factor EB (TFEB), a key regulator of autophagy, in intestinal permeability and MASH progression.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice.

Microbiol Spectr

January 2025

Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China.

Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!