A Review of Non-Soil Biochar Applications.

Materials (Basel)

Department of Applied Science and Technology, Polytechnic of Turin, C.so Duca degli Abruzzi 24, 10129 Turin, Italy.

Published: January 2020

Biochar is the solid residue that is recovered after the thermal cracking of biomasses in an oxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we report all the non-soil applications of biochar including environmental remediation, energy storage, composites, and catalyst production. We provide a general overview of the recent uses of biochar in material science, thus presenting this cheap and waste-derived material as a high value-added and carbonaceous source.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013903PMC
http://dx.doi.org/10.3390/ma13020261DOI Listing

Publication Analysis

Top Keywords

applications biochar
12
soil amendment
8
biochar
6
review non-soil
4
non-soil biochar
4
biochar applications
4
biochar solid
4
solid residue
4
residue recovered
4
recovered thermal
4

Similar Publications

This study aims to investigate a new approach to removing hazardous dyes like Direct Blue 86 (DB86) and Acid Yellow 36 (AY36) from aqueous environments. Delonix regia biochar-sulphur (DRB-S), made from Delonix regia seed pods (DPSPs), is an inexpensive and environmentally friendly adsorbent. Different characterization investigations using BJH, BET, FTIR, SEM, DSC, TGA, and EDX were utilized in the descriptions of the DRB-S biosorbent.

View Article and Find Full Text PDF

Synergistic enhancement in ultra-trace thallium(I) removal using the titanium dioxide/biochar composite.

J Environ Manage

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:

Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

In this study, the improvement effect of different organic substances on compacted cohesive soil in southern Xinjiang was discussed, with emphasis on the influence of different organic substances on soil chemical properties and microorganisms, so as to determine the best carbon source input and provide theoretical support for the rational utilization of organic materials in southern Xinjiang. Field experiments were conducted to evaluate the effects of farm fertilizer, biochar, commercial organic fertilizer, microbial fertilizer and mineral potassium humate on physical and chemical properties of viscous soil, agronomic properties and yield of cotton, with three gradients for each organic fertilizer. The results showed that: (1) all organic fertilizers improved soil structure, among which farm fertilizer significantly reduced soil bulk density and salinity, increased soil organic matter, total nitrogen and available nutrients, and thus increased cotton height, stem diameter and yield.

View Article and Find Full Text PDF

Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies.

Int J Phytoremediation

January 2025

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China.

Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!