Biochar is the solid residue that is recovered after the thermal cracking of biomasses in an oxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we report all the non-soil applications of biochar including environmental remediation, energy storage, composites, and catalyst production. We provide a general overview of the recent uses of biochar in material science, thus presenting this cheap and waste-derived material as a high value-added and carbonaceous source.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013903 | PMC |
http://dx.doi.org/10.3390/ma13020261 | DOI Listing |
Sci Rep
January 2025
National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
This study aims to investigate a new approach to removing hazardous dyes like Direct Blue 86 (DB86) and Acid Yellow 36 (AY36) from aqueous environments. Delonix regia biochar-sulphur (DRB-S), made from Delonix regia seed pods (DPSPs), is an inexpensive and environmentally friendly adsorbent. Different characterization investigations using BJH, BET, FTIR, SEM, DSC, TGA, and EDX were utilized in the descriptions of the DRB-S biosorbent.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:
Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China.
In this study, the improvement effect of different organic substances on compacted cohesive soil in southern Xinjiang was discussed, with emphasis on the influence of different organic substances on soil chemical properties and microorganisms, so as to determine the best carbon source input and provide theoretical support for the rational utilization of organic materials in southern Xinjiang. Field experiments were conducted to evaluate the effects of farm fertilizer, biochar, commercial organic fertilizer, microbial fertilizer and mineral potassium humate on physical and chemical properties of viscous soil, agronomic properties and yield of cotton, with three gradients for each organic fertilizer. The results showed that: (1) all organic fertilizers improved soil structure, among which farm fertilizer significantly reduced soil bulk density and salinity, increased soil organic matter, total nitrogen and available nutrients, and thus increased cotton height, stem diameter and yield.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China.
Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!