Multi-metallic nanoparticles continue to attract attention, due to their great potential in various applications. In this paper, we report a facile aqueous-phase synthesis for multi-metallic nanoparticles, including AgPt, AgPd, CuPt, and AgCuPt, by a co-reduction method within a short reaction time of 10 min. The atomic ratio of bimetallic nanoparticles was easily controlled by varying the ratio of each precursor. In addition, we found that AgCuPt trimetallic nanoparticles had a core-shell structure with an Ag core and CuPt shell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013979 | PMC |
http://dx.doi.org/10.3390/ma13020254 | DOI Listing |
Nat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFFEBS J
December 2024
Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Germany.
Serpentinizing hydrothermal vents are likely sites for the origin of metabolism because they produce H as a source of electrons for CO reduction while depositing zero-valent iron, cobalt, and nickel as catalysts for organic reactions. Recent work has shown that solid-state nickel can catalyze the H-dependent reduction of CO to various organic acids and their reductive amination with H and NH to biological amino acids under the conditions of H-producing hydrothermal vents and that amino acid synthesis from NH, H, and 2-oxoacids is facile in the presence of Ni. Such reactions suggest a metallic origin of metabolism during early biochemical evolution because single metals replace the function of over 130 enzymatic reactions at the core of metabolism in microbes that use the acetyl-CoA pathway of CO fixation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Developing a mild and efficient pretreatment technique to fully utilize lignocellulosic biomass remains a challenge. In this work, a biphasic system with 2-phenoxyethanol (EPH) organic solvent and phosphotungstic acid (PTA) aqueous solution was employed to pretreat corn stover. The prominent synergistic effect between EPH and PTA was revealed to play a key role in the fractionation of corn stover.
View Article and Find Full Text PDFACS Omega
December 2024
Chemistry Department, College of Science, Bahir Dar University, PO Box 79 Bahir Dar, Ethiopia.
Water contamination by nitro compounds from various industrial processes has significantly contributed to environmental pollution and severely threatened aquatic ecosystems. Inexpensive, efficient, and environmentally benign catalysts are required for the catalytic reduction of such nitro compounds. This study reports the fabrication of various nanocomposites (NCs) of copper oxide nanoparticles (CuO NPs) supported on a kaolin sheet using straightforward and simple one-pot synthesis procedures that control the metal precursor to kaolin ratios.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!