Starting from 1-acetyl-1-cyclohexene, three enantiomeric pairs (ee ≥99%) of bicyclic δ-halo-γ-lactones with cyclohexane ring were obtained in five-step synthesis. The key stereochemical steps were lipase-catalyzed kinetic resolution of racemic 1-(cyclohex-1-en-1-yl) ethanol followed by transfer of chirality to ethyl 2-(2-ethylidenecyclohexyl) acetate in the Johnson-Claisen rearrangement. Synthesized halolactones exhibited antiproliferative activity towards canine B-cell leukemia cells (GL-1) and canine B-cell chronic leukemia cells (CLB70) and the most potent (IC 18.43 ± 1.46 μg/mL against GL-1, IC 11.40 ± 0.40 μg/mL against CLB70) comparable with the control etoposide, was (1,6,1')-1-(1'-chloroethyl)-9- oxabicyclo[4.3.0]nonan-8-one (). All halolactones did not have a toxic effect on erythrocytes and did not change the fluidity of membranes in the hydrophobic region of the lipid bilayer. Only weak changes in the hydrophilic area were observed, like the degree of lipid packing and associated hydration. The racemic halolactones were also tested for their antimicrobial properties and found to exhibit selectivity towards bacteria, in particular, towards Proteus mirabilis ATCC 35659.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022392PMC
http://dx.doi.org/10.3390/biom10010095DOI Listing

Publication Analysis

Top Keywords

bicyclic δ-halo-γ-lactones
8
δ-halo-γ-lactones cyclohexane
8
cyclohexane ring
8
canine b-cell
8
leukemia cells
8
chemoenzymatic synthesis
4
synthesis enantiomeric
4
enantiomeric bicyclic
4
ring biological
4
biological activity
4

Similar Publications

We have devised a copper-catalysed tandem annulation reaction to generate a new class of bicyclic nucleoside analogues (BCNAs), namely, amino-substituted thiazolopyrimidine ribonucleosides. The reaction between triacetyl-5-iodo-cytidine and an appropriate organic isothiocyanate in the presence of a Cu salt and ligand resulted in the formation of an amino-substituted thiazolopyrimidine moiety. This reaction was found to be compatible with a range of aliphatic and aromatic isothiocyanates, affording the corresponding products in moderate to good yields.

View Article and Find Full Text PDF

Aim: Human carbonic anhydrases (hCAs) are involved in many physiological processes including respiration, pH control, ion transport, bone resorption, and gastric fluid secretion. Recently, CA IX and CA XII have been studied for their role in cancer diseases, motivating the design of inhibitors of these isoforms.

Material And Method: Here, we used the tail approach to design a new series of monoaryl () and bicyclic () benzensulfonamide derivatives CA IX and CA XII inhibitors.

View Article and Find Full Text PDF

The substitution of an aromatic ring with a C(sp)-rich bicyclic hydrocarbon, known as bioisosteric replacement, plays a crucial role in modern drug discovery. Substituted bicyclo[1.1.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) offers a renewable and degradable alternative to petroleum-based plastic, but its mechanical properties are not ideal for many applications. Herein, we describe the synthesis and polymerization of 2-oxo-3,8-dioxabicyclo[3.2.

View Article and Find Full Text PDF

Simple and sustainable three- and four-step sequences of di-OH-protection/mono-OMe-deprotection/OrgRC and di-OH-protection/mono-OMe-deprotection/OrgRC/OMe-deprotection protocols were developed to construct biologically active natural products of irisoquin, irisoquin A, irisoquin D, irisoquin F, sorgoleone-364, embelin, rapanone, 5--methylembelin, 5--methylrapanone and their analogues from the commercially available 2,5-dihydroxy-1,4-benzoquinone, aliphatic aldehydes and Hantzsch ester (1,4-DHP) in very good to excellent yields by using organocatalytic reductive coupling (OrgRC) as key reaction. Many of these natural compounds exhibited a broad spectrum of biological activities including antioxidant, anti-inflammatory, anticonvulsant, anxiolytic, analgesic, anthelmintic, antitumor, antibacterial, and antifertility properties. At the same time, simple and readily available 2,5-dihydroxy-1,4-benzoquinone was transformed into a functionally rich library of 2,5-dihydroxy-3,6-dialkyl-1,4-benzoquinones in very good yields by using sequential OrgRC followed by deprotection reactions and resulting natural/unnatural products would be excellent targets for investigation to show their biological activities compared to known natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!