Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ground and environmental vibrations induced by high dam flood discharge from the Xiangjiaba hydropower station (XHS) has significant adverse effects on nearby building safety and the physical and mental health of surrounding residents. As an effective approach to simulate the flow-induced vibration of hydraulic structures, the hydro-elastic experiment approach has been extensively applied and researched by Chinese scholars, but the relevant systematic research is rarely reported in international journals. Firstly, the hydraulic and structural dynamic similarity conditions that should be satisfied by the hydro-elastic model are briefly reviewed and derived. A hydro-elastic model of the XHS was further constructed using self-developed high-density rubber, and the vibration isolation system (including open trenches and flexible connects) was applied to avoid the external disturbances of pump operation, vehicle vibration and other experiments in the laboratory. Based on the data of model and prototype dynamic tests, a back propagation (BP) neural network was established to map the acceleration of the physical model to the ground in the prototype. In order to reduce the ground vibration, experiments were carried out to meticulously evaluate the ground vibration intensity under more than 600 working conditions, and the optimal operation scheme under different discharge volumes is presented here in detail. According to the prototype test data in 2013, 2014, and 2015, ground vibrations were significantly reduced by applying the presented optimal operation principle which indicates that the presented hydro-elastic approach and the vibration attenuation operation scheme were effective and feasible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982289 | PMC |
http://dx.doi.org/10.3390/ijerph17010377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!