The relationship between wood and its degree of humidity is one of the most important aspects of its use in construction and restoration. The wood presents a behavior similar to a sponge, therefore, moisture is related to its expansion and contraction. The nondestructive evaluation (NDE) of the amount of moisture in wood materials allows to define, e.g., the restoration procedures of buildings or artworks. In this work, an integrated study of two non-contact techniques is presented. Infrared thermography (IRT) was able to retrieve thermal parameters of the wood related to the amount of water added to the samples, while the interference pattern generated by speckles was used to quantify the expansion and contraction of wood that can be related to the amount of water. In twenty-seven wooded samples, a known quantity of water was added in a controlled manner. By applying advanced image processing to thermograms and specklegrams, it was possible to determine fundamental values controlling both the absorption of water and the main thermophysical parameters that link the samples. On the one hand, results here shown should be considered preliminary because the experimental values obtained by IRT need to be optimized for low water contents introduced into the samples. On the other hand, speckle interferometry by applying an innovative procedure provided robust results for both high and low water contents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983030 | PMC |
http://dx.doi.org/10.3390/s20010316 | DOI Listing |
Fragile X Syndrome (FXS) is characterized by intellectual impairment caused by CGG repeat expansion in the FMR1 gene. When repeats exceed 200, they induce DNA methylation of the promoter and the repeat region, resulting in transcriptional silencing of the FMR1 gene and the subsequent loss of FMRP protein. In the past decade or so, research has focused on the role of FMRP as an RNA-binding protein involved in translation inhibition in the brain in FXS model mice, particularly by slowing or stalling ribosome translocation on mRNA.
View Article and Find Full Text PDFChemistry
December 2024
Qingdao University, College of Chemistry and Chemical Engineering, Shanding, CHINA.
Photomechanical crystals act as light-driven material-machines that can convert the energy carried by photons into kinetic energy via shape deformation or displacement, and this capability holds a paramount significance for the development of photoactuated devices. This transformation is usually attributed to anisotropic expansion or contraction of the unit cell engendered by light-induced structural modifications that lead to accumulation and release of stress that generates a momentum, resulting in readily observable mechanical effects. Among the available photochemical processes, the photoinduced [2+2] and [4+4] are known for their robustness, predictability, amenability for control with molecular and supramolecular engineering approaches, and efficiency that has already been elevated to a proof-of-concept smart devices based on organic crystals.
View Article and Find Full Text PDFVet Parasitol
December 2024
Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden.
Coccidiosis, infection with protozoan parasites of genus Eimeria, is a major problem in poultry husbandry world-wide. The disease is currently managed by coccidiostats and live vaccines, but these approaches are not sustainable. Hence, it is important to identify new means to control the infection and/or ameliorate its detrimental effects on gut health.
View Article and Find Full Text PDFJ Hered
December 2024
Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, Ohio, 43210 USA.
Conservation of threatened species can benefit from an evaluation of genes in the Major Histocompatibility Complex (MHC), whose loci encode proteins that bind pathogens and are often under strong selection to maintain diversity in immune response to diseases. Despite this gene family's importance to disease resistance, little is known about these genes in reptiles including snakes. To address this issue, we assembled and annotated a highly-contiguous genome assembly for the timber rattlesnake (Crotalus horridus), a pit viper which is threatened or endangered in parts of its range, and analyzed this new genome along with three other rattlesnake genomes to characterize snake MHC loci.
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2024
Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China. Electronic address:
The brown planthoppers (BPH, Nilaparvata lugens), white backed planthopper (WBPH, Sogatella furcifera) and small brown planthopper (SBPH, Laodelphax striatellus) are widely distributed rice insect pests, causing huge annual yield loss of rice production. Though these three planthoppers belong to the same family, Delphacidae of Hemiptera, their genome sizes (GS) are very different, ranging from 541 to 1088 Mb. To uncover the main factors driving GS changes of three planthoppers, we first estimated the GS of their ancestor Fulgoroidea, to be 794.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!