Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recombinant production of pharmaceutical proteins like antigen binding fragments (Fabs) in the commonly-used production host presents several challenges. The predominantly-used plasmid-based expression systems exhibit the drawback of either excessive plasmid amplification or plasmid loss over prolonged cultivations. To improve production, efforts are made to establish plasmid-free expression, ensuring more stable process conditions. Another strategy to stabilize production processes is lactose induction, leading to increased soluble product formation and cell fitness, as shown in several studies performed with plasmid-based expression systems. Within this study we wanted to investigate lactose induction for a strain with a genome-integrated gene of interest for the first time. We found unusually high specific lactose uptake rates, which we could attribute to the low levels of lac-repressor protein that is usually encoded not only on the genome but additionally on pET plasmids. We further show that these unusually high lactose uptake rates are toxic to the cells, leading to increased cell leakiness and lysis. Finally, we demonstrate that in contrast to plasmid-based T7 expression systems, IPTG induction is beneficial for genome-integrated T7 expression systems concerning cell fitness and productivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175309 | PMC |
http://dx.doi.org/10.3390/bioengineering7010008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!