Fatigue Limit of Custom 465 with Surface Strengthening Treatment.

Materials (Basel)

Qing'an Group Corporation Limited, Xi'an 710077, China.

Published: January 2020

In order to study the effect of nitriding or shot peening on the surface modification and fatigue properties of martensitic stainless-steel Custom 465, the residual stress and micro-hardness of the strengthened layer are determined by X-ray and micro-hardness tester, respectively. The up-and-down method is used to measure the rotational bending fatigue strength at 1 × 10 cycles, and the fatigue fracture characteristic is observed by scanning electron microscopy. The relationship between surface residual stress and internal fatigue limit of surface strengthening treatment is discussed. Results show that nitriding or shot peening surface strengthening layer forms a certain depth of compressive residual stress, where in the surface compressive residual stress of the nitrided specimens is greater than the shot peened specimens. The micro-hardness of the nitrided or shot peened surface strengthening layer is significantly improved, where in the surface micro-hardness of nitriding specimens are higher than shot peening specimens. The nitriding or shot peening surface strengthening can significantly improve the fatigue limit of Custom 465, wherein the fatigue limits of nitrided and shot peened surface strengthened specimens are 50.09% and 50.66% higher than that of the un-surface strengthened specimens, respectively. That is, the effect of the two strengthening methods on fatigue limit is not very different. The fracture characteristics show that the fatigue crack of the un-surface strengthened specimens originates from the surface, while the fatigue crack of surface strengthened specimens originates from the subsurface layer under the strengthened layer. The relationship between the internal fatigue limit and the surface residual stress of the surface strengthened specimen can be used as a method for predicting the fatigue limit of the surface strengthened specimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981755PMC
http://dx.doi.org/10.3390/ma13010238DOI Listing

Publication Analysis

Top Keywords

fatigue limit
24
surface strengthening
20
residual stress
20
strengthened specimens
20
shot peening
16
surface strengthened
16
surface
15
fatigue
12
custom 465
12
nitriding shot
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!