Fasudil enhanced differentiation of BMSCs in vivo and vitro, involvement of P38 signaling pathway.

Chem Biol Interact

Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China. Electronic address:

Published: February 2020

Bone mesenchymal stem cells (BMSCs) are a well-known donor graft source due to their potential for self-renewal and differentiation into multi-lineage cell types, including osteoblasts that are critical for fracture healing. Fasudil (FAS), a Rho kinase inhibitor, has been proven to induce the differentiation of bone marrow stem cells (BMSCs) into neuron-like cells. However, its role in the osteogenesis of BMSCs remain uncertain. Herein, we for the first time studied the effects of FAS on osteogenic differentiation in a mouse fracture model and further explored the involved mechanisms in mouse BMSCs. The results showed that FAS stimulated bone formation in the fracture mouse model. Additionally, at 30 μM, FAS significantly promotes alkaline phosphatase activity, mineralization, and the expression of osteogenic markers COL-1, RUNX2 and OCN in murine BMSCs. Blocking of P38 by SB202190 significantly reversed the effects of FAS, in vitro, suggesting that P38, but not ERK or JNK activation is required for FAS-induced osteogenesis. Collectively, our results indicate that FAS may be a promising agent for promoting fracture healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2020.108944DOI Listing

Publication Analysis

Top Keywords

stem cells
8
cells bmscs
8
fracture healing
8
effects fas
8
bmscs
6
fas
6
fasudil enhanced
4
differentiation
4
enhanced differentiation
4
differentiation bmscs
4

Similar Publications

NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo.

Biomacromolecules

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds.

Stem Cells Transl Med

December 2024

Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States.

The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants.

View Article and Find Full Text PDF

Tissue engineering and cartilage transplantation constitute an evolving field in the treatment of osteoarthritis, with therapeutic and clinical promise shown in autologous chondrocyte implantation. The aim of this systematic review is to explore current clinical trials that utilized autologous chondrocyte transplantation (ACT) and assess its efficacy in the treatment of osteoarthritis. PubMed, Ovid MEDLINE, and Google-Scholar (pages 1-20) were searched up until February 2023.

View Article and Find Full Text PDF

Signaling pathway regulators in preimplantation embryos.

J Mol Histol

December 2024

Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.

Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!