Conventional transverse relaxation time (T)-mediated magnetic resonance sensors (MRS) that utilizing the target-induces state change of magnetic nanoparticles (MNPs) mainly suffer from low sensitivity. Recent T-MRS that based on target-induced amount change of MNPs can achieve a higher sensitivity, but these sensors can hardly accommodate small molecules. We herein develop an ultrasensitive T-MRS that enable the detection of small molecules based on cascade bioorthogonal reactions (BRs)-realized MNPs binding and assembly. Benefiting from rapid and highly selective cascade BRs, a single small molecule target can not only increase MNPs binding but also assembly MNPs, which greatly amplifies T signal for sensing based on both the state and amount change of MNPs for the first time. Our strategy is capable of sensing chlorpyrifos with a liner range of 0.1 ng/mL to 1000 ng/mL. We justify the practicability of our assay by detecting chlorpyrifos in apple and cabbage samples, whose accuracy is higher than that of enzyme linked immunosorbent assay. Our assay provides a cascade BRs-mediated MRS that can greatly broaden the use of T-based MRS for ultrasensitive sensing trace small molecules in complex samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b05097DOI Listing

Publication Analysis

Top Keywords

binding assembly
12
small molecules
12
bioorthogonal reactions
8
magnetic nanoparticles
8
magnetic resonance
8
amount change
8
change mnps
8
mnps binding
8
mnps
6
reactions amplify
4

Similar Publications

This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.

View Article and Find Full Text PDF

Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.

View Article and Find Full Text PDF

Higher-order transient structures and the principle of dynamic connectivity in membrane signaling.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.

We examine the role of higher-order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS.

View Article and Find Full Text PDF

mRNA decay pre-complex assembly drives timely cell-state transitions during differentiation.

Cell Rep

December 2024

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Genetic Medicine, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Electronic address:

Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein brain tumor (Brat) promotes the degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and uncommitted intermediate neural progenitors (immature INPs). We identify ubiquitin-specific protease 5 (Usp5) as a candidate Brat interactor essential for the degradation of Brat target mRNAs.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Spectroscopy to Study Virus Structure.

Subcell Biochem

December 2024

IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.

Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!