Circulating factors have been implicated in the pathogenesis of minimal change disease (MCD), and may have direct effects on cholesterol metabolism. This study investigated the pathogenesis of hypercholesterolemia in an IL-13 overexpression rat model of MCD prior to the onset of proteinuria, so as to establish the direct contribution of IL-13, especially with regard to hepatic cholesterol handling. In this model of MCD, the temporal relationship between hypercholesterolemia and proteinuria was first identified. Plasma proprotein convertase subtilisin/kexin type 9 (Pcsk9) and liver ATP-binding cassette sub-family G member 5 (Abcg5) were measured using ELISA. Liver Ldlr and liver X receptor alpha (Lxra) were quantified with Western blot. Abcg5-mediated cholesterol efflux in IL-13-stimulated rat primary hepatocytes was measured using taurocholate as cholesterol acceptor. The role of Lxra was validated using a luciferase assay in Lxre-luciferase-transfected IL-13-stimulated hepatocytes. IL-13-transfected rats developed hypercholesterolemia prior to proteinuria, with 35% of rats hypercholesterolemic but only 11% proteinuric by Day 20 (P = 0.04). These pre-proteinuric hypercholesterolemic rats showed elevations in total and LDL-cholesterol, but not hypertriglyceridemia or hepatic steatosis. The hypercholesterolemia was associated with increased hepatic Pcsk9 synthesis and enhanced circulating Pcsk9 levels, which correlated strongly with plasma total cholesterol (r = 0.73, P<0.001). The hypercholesterolemia was also contributed by decreased Abcg5 expression and activity, due to reduced Lxra expression. Lxra expression correlated with plasma total cholesterol levels (r = -0.52, P = 0.01), and overexpression of pLxra in rat hepatocytes abrogated the IL-13-mediated down-regulation of Lxre-driven gene expression. In conclusion, we have shown that IL-13 induced changes in hepatic cholesterol handling in a cytokine-induced rat model of MCD, resulting in hypercholesterolemia which can precede the onset of proteinuria.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20190961DOI Listing

Publication Analysis

Top Keywords

hepatic cholesterol
8
cholesterol handling
8
rat model
8
minimal change
8
change disease
8
model mcd
8
cholesterol
6
hypercholesterolemia
5
il-13-driven alterations
4
hepatic
4

Similar Publications

Cholesterol ester storage disease (CESD) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the LIPA gene, leading to reduced lysosomal acid lipase activity, cholesterol ester accumulation, and systemic manifestations including liver dysfunction and dyslipidemia. We report the case of a 25-year-old male presenting with subacute jaundice, hyperbilirubinemia (total bilirubin 51 mg/dL, predominantly direct), and dyslipidemia characterized by elevated total cholesterol and low HDL cholesterol levels. Initial diagnostic workup for acute hepatitis and liver dysfunction, including serological and imaging studies, was unremarkable.

View Article and Find Full Text PDF

Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

The antihyperglycemic activity of extracellular polysaccharopeptides (ePSP) obtained from Trametes versicolor (TV) strain LH-1 has been demonstrated in hepatic cells and diabetic animals. This study further investigated the mechanisms of T. versicolor-ePSP on regulating glucose metabolism, including insulin signaling molecules and glucose metabolism-associated enzymes, in the liver of rats with type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Bile acid sequestrant inhibits gluconeogenesis via inducing hepatic cysteine dioxygenase type 1 to reduce cysteine availability.

Am J Physiol Gastrointest Liver Physiol

January 2025

Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.

Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes.

View Article and Find Full Text PDF

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!