The biochemical mechanisms mediating delayed or secondary tissue injury after central nervous system trauma remain speculative. We have demonstrated previously that traumatic brain injury in rats causes a rapid decline in tissue intracellular free magnesium [Mg]f and total magnesium [Mg]t concentrations, which were significantly correlated with injury severity. In order to examine the relationship between magnesium and traumatic brain injury, we assessed whether (1) magnesium deficiency exacerbates or (2) magnesium treatment improves posttraumatic outcome following fluid-percussion brain injury (2.0-2.4 atm) in rats. Animals placed on magnesium-deficient diet for 14 days showed a 15% decrease in brain [Mg]f as measured by phosphorus (31P) magnetic resonance spectroscopy (MRS). Magnesium deficiency significantly exacerbated neurologic dysfunction and increased mortality following injury when compared to normally fed saline-treated controls. Conversely, pretreatment with magnesium sulfate (0.1 mEq) 15 min before brain injury prevented the fall in [Mg]f observed by 31P MRS in saline-treated animals and significantly improved both cellular bioenergetic state and chronic posttraumatic neurologic outcome. These combined observations suggest that alterations in brain [Mg]f after trauma may play a role in the pathophysiology of traumatic brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.1988.5.17DOI Listing

Publication Analysis

Top Keywords

brain injury
24
traumatic brain
16
magnesium deficiency
12
injury
9
magnesium
8
deficiency exacerbates
8
brain
8
injury rats
8
31p magnetic
8
magnetic resonance
8

Similar Publications

Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

The long-term clinical outcomes and associated prognostic factors in contactin-associated protein-like 2 (CASPR2)-antibody diseases are unknown. A total of 75 participants with CASPR2 antibodies were longitudinally assessed for disability, quality-of-life, and chronic pain. Although most symptoms improved within 6 months of treatment, neuropathic pain and fatigue were the most immunotherapy refractory, and persisted for up to 6 years.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!