Gestational diabetes mellitus (GDM) is a common metabolic disease during pregnancy with serious harm. However, the pathogenesis of GDM has not been thoroughly studied. Recent reports have shown that microRNAs (miRNAs) are associated with GDM, but the mechanisms remain unclear. This study aimed to investigate the role of miR-142-3p in β cells of GDM. We established GDM mouse models by injecting streptozotocin (STZ) to extract embryonic tissue, peripheral blood and pancreas. qRT-PCR was used to detect the expression of miR-142-3p and FOXO1. 5-ethynyl-2'-deoxyuridine (EDU) staining and flow cytometry were used to measure cell proliferation and apoptosis. Western blot analysis was used to determine the expression of proliferation and apoptosis-related proteins. Dual-luciferase reporter assay was used to assess the target relationship between miR-142-3p and FOXO1. The results showed that miR-142-3p was up-regulated in embryonic tissue and peripheral blood of GDM model mice. Overexpression of miR-142-3p and knockdown of FOXO1 both promoted INS-1 cell proliferation, inhibited apoptosis, increased proliferating cell nuclear antigen (PCNA) and Bcl-2 expression, as well as reduced the expression level of p27, Bax and cleaved caspase-3. There are binding sites between miR-142-3p and FOXO1, which is miR-142-3p directly regulated FOXO1 expression. Moreover, above increases and decreases induced by miR-142-3p were attenuated by FOXO1 overexpression. In conclusion, miR-142-3p promotes the survival of pancreatic β cells through targeting FOXO1 in GDM. This study suggests that targeted regulation of miR-142-3p/FOXO1 might be a new strategy for the treatment of GDM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947098 | PMC |
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue
February 2024
Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China. Corresponding author: Song Lan, Email:
Objective: To investigate the protective effect of Xuebijing injection on acute lung injury (ALI) associated with cardiopulmonary bypass (CPB) by regulating the apoptosis of polymorphonuclear neutrophils (PMN).
Methods: Thirty male Sprague-Dawley (SD) rats were randomly divided into sham operation group (Sham group), CPB model group (CPB group) and Xuebijing pretreatment group (XBJ group) according to the random number table method, with 10 rats in each group. Rats in the CPB group and XBJ group undergoing CPB procedures for 60 minutes.
Mol Cancer
November 2023
Beijing Institute of Biotechnology, Beijing, 100071, China.
Background: Noncoding RNAs such as circular RNAs (circRNAs) are abundant in the human body and influence the occurrence and development of various diseases. Non-small cell lung cancer (NSCLC) is one of the most common malignant cancers. Information on the functions and mechanism of circRNAs in lung cancer is limited; thus, the topic needs more exploration.
View Article and Find Full Text PDFStem Cell Res Ther
September 2020
Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China.
An amendment to this paper has been published and can be accessed via the original article.
View Article and Find Full Text PDFJ Cancer
January 2020
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Prostate cancer (PCa) is a heterogeneous malignancy, and is a primary cause of cancer-related death in males. Forkhead box transcription factor O1 (FOXO1) exerts antitumor effects in various cancers, including PCa. However, the regulatory mechanism of miR-142-3p on FOXO1 expression in human PCa has not been characterized.
View Article and Find Full Text PDFStem Cell Res Ther
January 2020
Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China.
Aims: Extracellular vesicles, especially exosomes, have emerged as key mediators of intercellular communication with the potential to improve cardiac function as part of cell-based therapies. We previously demonstrated that the cardioprotective factor, macrophage migration inhibitory factor (MIF), had an optimizing effect on mesenchymal stem cells (MSCs). The aim of this study was to determine the protective function of exosomes derived from MIF-pretreated MSCs in cardiomyocytes and to explore the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!