MicroRNAs (miRNAs) have been recognized to modulate the progression of tumorigenesis by serving as oncogenes or tumor suppressors. Despite the involvement of miR-181a and miR-203 in several cancers as has been substantiated, their roles in laryngeal carcinoma (LC) remain unclear. In this study, the abundances of miR-181a, miR-203 and activating transcription factor 2 (ATF2) mRNA in LC cell lines were detected by RT-qPCR. Western blot was performed to detect the protein levels of N-cadherin, E-cadherin and ATF2. Cell migration and invasion ability were assessed by Trans-well assay. The putative binding sites between miR-181a or miR-203 and ATF2 were predicted using Bioinformatics software and further validated by Dual-Luciferase reporter and RNA immunoprecipitation (RIP) assays. Results showed reduced abundances of miR-181a and miR-203 in LC cell lines. Introduction of miR-181a or miR-203 reduced cell migration and invasion, which was further confirmed by the reduction of N-cadherin and increase of E-cadherin in LC cells. ATF2 was identified to be a potential target of miR-181a and miR-203. Absence of ATF2 overturned the stimulatory effects of anti-miR-181a and anti-miR-203 on cell migration and invasion in LC cells. Our findings suggested that miR-181a and miR-203 attenuated cell migration and invasion ability by directly targeting ATF2 in LC, providing novel insight into the regulatory mechanisms of miR-181a and miR-203 in LC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944000 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!