Background: Pesticides are major xenobiotic compounds and environmental pollutants, which are able to alter drug-metabolizing enzyme as well as pharmacokinetics of drugs. Subsequent to the release of the human genome project, genetic variations (polymorphism) become an integral part of drug development due to their influence on disease susceptibility/ progression of the disease and their impact on drug absorption, distribution, metabolism of active metabolites and finally excretion of the drug. Genetic polymorphisms crucially regulate pharmacokinetics and pharmacodynamics of drugs under the influence of physiological condition, lifestyle, as well as pathological conditions collectively.
Objective: To review all the evidence concerning the effect of environmental exposure on drug metabolism with reference to pharmacogenomics.
Methods: Scientific data search and review of basic, epidemiological, pharmacogenomics and pharmacokinetics studies were undertaken to evaluate the influence of environmental contaminants on drug metabolism.
Results: Various environmental contaminants like pesticides effectively alter drug metabolism at various levels under the influence of pharmacogenomics, which interferes with pharmacokinetics of drug metabolism. Genetic polymorphism of phase I and phase II xenobiotic-metabolizing enzymes remarkably alters disease susceptibility as well as the progression of disease under the influence of various environmental contaminants at various levels.
Conclusion: Individual specific drug response may be attributed to a large variety of factors alone or in combination ranging from genetic variations (SNP, insertion, deletion, duplication etc.) to physiological setting (gender, age, body size, and ethnicity), environmental or lifestyle factors (radiation exposure, smoking, alcohol, nutrition, exposure to toxins, etc.); and pathological conditions (obesity, diabetes, liver and renal function).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389200221666200110153304 | DOI Listing |
Cell Rep
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China. Electronic address:
Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China.
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou City, People's Republic of China.
Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFThe kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!