The 70-kD heat shock proteins (HSP70s or HSC70s) function as molecular chaperones and are involved in diverse cellular processes. We recently demonstrated the roles of mitochondrial HSC70-1 (mtHSC70-1) in the establishment of cytochrome oxidase (COX)-dependent respiration and redox homeostasis in . Defects in COX assembly were observed in the knockout lines. The levels of Cox2 (COX subunit 2) proteins in COX complex were markedly lower in the mutants than in wild-type plants; however, the levels of total Cox2 proteins in the mutants were not obviously different from those in wild-type plants, suggesting that the stability of COX or the availability of Cox2 was impaired in the mutants. Here, we further detected the interaction between mtHSC70-1 and Cox2 proteins through co-immunoprecipitation, pull-down and firefly luciferase complementation imaging assays. The results showed that mtHSC70-1 could directly combine Cox2 and , providing supporting evidence for the role of mtHSC70-1 in COX assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053962PMC
http://dx.doi.org/10.1080/15592324.2020.1714189DOI Listing

Publication Analysis

Top Keywords

cytochrome oxidase
8
cox assembly
8
mutants wild-type
8
wild-type plants
8
cox2 proteins
8
cox2
6
cox
5
arabidopsis mthsc70-1
4
mthsc70-1 physically
4
physically interacts
4

Similar Publications

This study describes a new species of Polyxenida from China, , along with a species newly recorded from China: (Miyosi, 1947), and provides additional descriptions of Ishii & Liang, 1990 and Ishii & Liang, 1990. The study conducted mitochondrial cytochrome oxidase subunit I (COI) sequencing for all four species and constructed a phylogenetic tree based on the molecular data. The comprehensive morphological descriptions and molecular analyses confirm the addition of one new species and one newly recorded species for the Polyxenida fauna of China, elevating the total number of known Polyxenida species in the country from 10 to 12.

View Article and Find Full Text PDF

In recent decades, the common and the tropical bed bugs have experienced a resurgence in many parts of the world. The evolution of insecticide resistance in bed bug populations is considered a significant factor contributing to this resurgence. We analyzed samples of Cimex lectularius L.

View Article and Find Full Text PDF

Schistosomiasis poses a significant global health threat, particularly in tropical and subtropical regions like Sudan. Although numerous epidemiological studies have examined schistosomiasis in Sudan, the genetic diversity of Schistosoma haematobium populations, specifically through analysis of the mtcox1 gene, remains unexplored. This study aimed to investigate the risk factors associated with urogenital schistosomiasis among school pupils in El-Fasher, Western Sudan, as well as the mtcox1 genetic diversity of human S.

View Article and Find Full Text PDF

Schistosomiasis, caused by the infection with Schistosoma japonicum, remains a significant public health concern in China. As the sole intermediate host of S. japonicum, the breeding and spread of Oncomelania hupensis contribute significantly to the potential risk of disease occurrence and transmission.

View Article and Find Full Text PDF

Pseudomonas aeruginosa T6SS secretes an oxygen-binding hemerythrin to facilitate competitive growth under microaerobic conditions.

Microbiol Res

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Pseudomonas aeruginosa is a prominent respiratory pathogen in cystic fibrosis (CF) patients, thriving in the hypoxic airway mucus. Previous studies have established the role of the oxygen-binding hemerythrin, Mhr, in enhancing P. aeruginosa's fitness under microaerobic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!