Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mitochondrial Ca overload is closely associated with seizure-induced neuronal damage. The mitochondrial calcium uniporter (MCU) plays a crucial role in regulating mitochondrial Ca homeostasis. However, the role of the MCU in seizure-induced neuronal damage remains elusive. In this study, the hippocampal neuronal culture (HNC) model of acquired epilepsy (AE) was used to investigate the role of the MCU in seizure-induced neuronal injury. We found an increase in mitochondrial Ca concentration in the HNC model of AE. The MCU inhibitor, Ru360, significantly reduced the rate of seizure-induced cell apoptosis and mitochondrial reactive oxygen species (ROS) production; whereas, the MCU agonist, spermine, exacerbated these processes. In addition, Ru360 significantly attenuated seizure-induced endoplasmic reticulum (ER) stress, which is characterized by the expression of glucose-regulated protein 78 (GRP78) and C/-EBP homologous protein (CHOP), while spermine had the opposite effect. We also found that pre-treatment with the mitochondria-targeted antioxidant, mitoquinone, decreased GRP78 and CHOP expression. Moreover, knockdown of CHOP using CHOP-specific small interfering RNA reduced neuronal seizure-induced apoptosis. Taken together, our data indicate that MCU inhibition has a neuroprotective effect against seizure-induced neuronal damage and that this mechanism may involve reduction of ROS-mediated ER stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2020.1715978 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!