: Definitive diagnostics of many diseases is based on the histological analysis of thin tissue cuts with optical white light microscopy. Extra information on tissue structural properties obtained with polarized light would help the pathologist to improve the accuracy of his diagnosis.

We report on using Mueller matrix microscopy data, logarithmic decomposition, and polarized Monte Carlo (MC) modeling for qualitative and quantitative analysis of thin tissue cuts to extract the information on tissue microstructure that is not available with a conventional white light microscopy.

Unstained cuts of human skin equivalents were measured with a custom-built liquid-crystal-based Mueller microscope in transmission configuration. To interpret experimental data, we performed the simulations with a polarized MC algorithm for scattering anisotropic media. Several optical models of tissue (spherical scatterers within birefringent host medium, and combination of spherical and cylindrical scatterers within either isotropic or birefringent host medium) were tested.

A set of rotation invariants for the logarithmic decomposition of a Mueller matrix was derived to rule out the impact of sample orientation. These invariants were calculated for both simulated and measured Mueller matrices of the dermal layer of skin equivalents. We demonstrated that only the simulations with a model combining both spherical and cylindrical scatterers within birefringent host medium reproduced the experimental trends in optical properties of the dermal layer (linear retardance, linear dichroism, and anisotropic linear depolarization) with layer thickness.

Our studies prove that Mueller polarimetry provides relevant information not only on a size of dominant scatterers (e.g., cell nuclei versus subwavelength organelles) but also on its shape (e.g., cells versus collagen fibers). The latter is directly related to the state of extracellular collagen matrix, which is often affected by early pathology. Hence, using polarimetric data can help to increase the accuracy of diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008502PMC
http://dx.doi.org/10.1117/1.JBO.25.1.015002DOI Listing

Publication Analysis

Top Keywords

logarithmic decomposition
12
birefringent host
12
host medium
12
tissue microstructure
8
monte carlo
8
carlo modeling
8
analysis thin
8
thin tissue
8
tissue cuts
8
white light
8

Similar Publications

CsCuI is considered a promising material for lead-free resistive switching (RS) memory devices due to its low operating voltage, high on/off ratio, and excellent thermal and environmental stability. However, conventional lead-free halide-based RS memory devices typically require solvent-based thin-film formation processes that involve toxic organic and acidic solvents, and the effects of process conditions on device performance are often not fully understood. This study investigates the effect of crystallinity on CsCuI-based RS memory devices fabricated thermal evaporation.

View Article and Find Full Text PDF

Energy-filtered quantum states are promising candidates for efficiently simulating thermal states. We explore a protocol designed to transition a product state into an eigenstate located in the middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us to comprehensively understand the crossover phenomenon and the subsequent convergence toward thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium, and long), and we interpret them as stages of thermalization.

View Article and Find Full Text PDF

China's transport carbon emissions are increasing quickly and the issue of emission reduction is urgent. This article aims to calculate and decompose China's transport carbon emissions during 2001-2019. It first calculates the China's transport carbon emissions by IPCC carbon emission factor method, and then applies the Logarithmic Mean Divisia Index (LMDI) model for decomposition analysis.

View Article and Find Full Text PDF

Metallic and nonmetallic nanoparticles are bioactive compounds that exhibit broad resistance to bacteria, fungi, and even viruses. In this paper, a deep eutectic solvent (DES) based on betaine, glucose, and ethylene glycol was used to obtain suspensions of silver, copper, and selenium nanoparticles. Depending on the nanoparticle precursor used, Ag, Cu, and Se nanoparticles (NPs) with an average particle size of 50-100 nm were prepared, and the properties of the products were confirmed by the STEM, XPS, DLS, and UV-VIS methods.

View Article and Find Full Text PDF

Unappreciated role of secondary metabolism-derived small mediators in degrading bisphenol A and antibiotics by a laccase-expressing fungus.

Environ Pollut

December 2024

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China. Electronic address:

Fungal laccase producers can effectively address bisphenol A (BPA) and antibiotic-contaminated water. However, the role of small mediators produced by fungal secondary metabolism in enhancing the removal of refractory contaminants is often overlooked. In this work, an efficient laccase-producing strain, Trametes hirsuta La-7, was activated to simultaneously treat BPA and antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!