Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this research, QSAR modeling was carried out through SMILES of compounds and on the basis of the Monte Carlo method to predict the antioxidant activity of 79 derivatives of pulvinic acid, 23 of coumarine, as well as nine structurally non-related compounds against three radiation sources of Fenton, gamma, and UV. QSAR model was designed through CORAL software, as well as a newer optimizing method well known as the index of ideality correlation. The full set of antioxidant compounds were randomly distributed into four sets, including training, invisible training, validation, and calibration; this division was repeated three times randomly. The optimal descriptors were picked up from a hybrid model by the combination of the hydrogen-suppressed graph and SMILES descriptors based on the objective function. These models' predictability was assessed on the sets of validation. The results of three randomized sets showed that simple, robust, reliable, and predictive models were achieved for training, invisible training, validation, and calibration sets of all three models. The central decrease/increase descriptors were identified. This simple QSAR can be useful to predict antioxidant activity of numerous antioxidants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-019-10026-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!