Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effective representation of a molecule is required to develop useful quantitative structure-property relationships (QSPR) for accurate prediction of chemical properties. The octanol-water partition coefficient logP, a measure of lipophilicity, is an important property for pharmacological and toxicological endpoints used in the pharmaceutical and regulatory spheres. We compare physicochemical descriptors, structural keys, and circular fingerprints in their ability to effectively represent a chemical space and characterise molecular features to correlate with lipophilicity. Exploratory landscape continuity analyses revealed that whole-molecule physicochemical descriptors could map together compounds that were similar in both molecular features and logP, indicating higher potential for use in logP QSPRs compared to the substructural approach of structural keys and circular fingerprints. Indeed, logP QSPR models parameterised by physicochemical descriptors consistently performed with the lowest error. Our best performing model was a stochastic gradient descent-optimised multilinear regression with 1438 descriptors, returning an internal benchmark RMSE of 1.03 log units. This corroborates the well-established notion that lipophilicity is an additive, whole-molecule property. We externally tested the model by participating in the 2019 SAMPL6 logP Prediction Challenge and blindly predicting for 11 protein kinase inhibitor fragment-like molecules. Our model returned an RMSE of 0.49 log units, placing eighth overall and third in the empirical methods category (submission ID 'hdpuj'). Permutation feature importance analyses revealed that physicochemical descriptors could characterise predictive molecular features highly relevant to the kinase inhibitor fragment-like molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10822-020-00279-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!