We have developed a model to study the kinetics of the redistribution of ions and molecules through a semipermeable membrane in complex mixtures of substances penetrating and nonpenetrating through a membrane. It takes into account the degree of dissociation of these substances, their initial concentrations in solutions separated by a membrane, and volumes of these solutions. The model is based on the assumption that only uncharged particles (molecules or ion pairs) diffuse through a membrane (and not ions as in the Donnan model). The developed model makes it possible to calculate the temporal dependencies of concentrations for all processing ions and molecules at system transition from the initial state to equilibrium. Under equilibrium conditions, the ratio of ion concentrations in solutions separated by a membrane obeys the Donnan distribution. The Donnan effect is the result of three factors: equality of equilibrium concentrations of penetrating molecules on each side of a membrane, dissociation of molecules into ions, and Le Chatelier's principle. It is shown that the Donnan distribution (irregularity of ion distribution) and accordingly absolute value of the Donnan membrane potential increases if: (i) the nonpenetrating salt concentration (in one of the solutions) and its dissociation constant increases, (ii) the total penetrating salt concentration and its dissociation constant decreases, and (iii) the volumes ratio increases (between solutions with and without a nonpenetrating substance). It is shown also that only a slight difference between the degrees of dissociation of two substances can be used for their membrane separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10863-019-09821-8 | DOI Listing |
Soft Matter
January 2025
School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant CH(OCHCH)OH (CE) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Attaining sub-Kelvin temperatures remains technologically challenging and often relies on the scarce resource He, unless employing adiabatic demagnetization refrigeration. Herein, the active coolant typically consists of weakly coupled paramagnetic ions, whose magnetic interaction strengths are comparable in energy to the relevant temperature regime of cooling. Such interactions depend strongly on inter-ion distances, fundamentally hindering the realization of dense coolants for sub-Kelvin refrigeration.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.
Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
We investigated the gas-liquid interface of aqueous solutions containing phenol and related aromatic compounds using extreme ultraviolet laser photoelectron spectroscopy and molecular dynamics simulations. The interfacial densities of protonated and deprotonated forms of phenol, aniline, and 4-nitrophenol were found to be primarily determined by their surface affinities and exhibit similar concentration dependences to their respective bulk densities. Despite the distinct interfacial orientations of their permanent dipole moments, these compounds monotonically decreased the surface potential at higher concentrations.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China. Electronic address:
Acute kidney injury (AKI) involves a series of syndromes characterized by a rapid increase in creatinine levels. Ferroptosis, as an iron-dependent mode of programmed cell death, reportedly participates in the pathogenesis of AKI. Methyltransferase-like 3 (METTL3)-mediated m6A modification has been recently associated with various kidney diseases; however, the mechanism of METTL3 crosstalk with the molecules involved in ferroptosis is not clearly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!