Mutations in budding yeast occur in meiosis at higher frequencies than in cells grown vegetatively. In contrast to mutations that occur in somatic cells, meiotic mutations have a special, long-range impact on evolution, because they are transferred to the following generations through the gametes. Understanding the mechanistic basis of meiotic mutagenicity is still lacking, however. Here, we report studies of mutagenicity in the reporter gene CAN1, in which forward mutation events in meiosis are sevenfold higher than in mitotic cells, as determined by fluctuation analysis. Meiotic mutations appear approximately at the same time as heteroallelic-recombination products and as meiotic DSBs. Recombination-associated timing of meiotic mutagenicity is further augmented by the absence of meiotic mutations in cells arrested after pre-meiotic DNA synthesis. More than 40% of the mutations generated in meiosis in CAN1 are found on chromosomes that have recombined in the 2.2 kb covering the reporter, implying that the mutations have resulted from recombination events and that meiotic recombination is mutagenic. The induced expression in yeast meiosis of low-fidelity DNA polymerases coded by the genes REV1, REV3, RAD30, and POL4 makes them attractive candidates for introducing mutations. However, in our extensive experiments with polymerase-deleted strains, these polymerases do not appear to be the major source of meiotic mutagenicity. From the connection between meiotic mutagenicity and recombination, one may conclude that meiotic recombination has another diversification role, of introducing new mutations at the DNA sequence level, in addition to reshuffling of existing variation. The new, rare meiotic mutations may contribute to long-range evolutionary processes and enhance adaptation to challenging environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00294-019-01051-0DOI Listing

Publication Analysis

Top Keywords

meiotic mutations
16
meiotic mutagenicity
16
mutations
11
meiotic
11
yeast meiosis
8
meiotic recombination
8
introducing mutations
8
meiosis
5
recombination
5
mutagenicity
5

Similar Publications

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.

Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.

View Article and Find Full Text PDF

Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation.

View Article and Find Full Text PDF

The centromere effect (CE) is a meiotic phenomenon that ensures meiotic crossover suppression in pericentromeric regions. Despite being a critical safeguard against nondisjunction, the mechanisms behind the CE remain unknown. Previous studies have shown that various regions of the pericentromere, encompassing proximal euchromatin, beta and alpha heterochromatin, undergo varying levels of crossover suppression, raising the question of whether distinct mechanisms establish the CE in these different regions.

View Article and Find Full Text PDF

In meiosis, one round of DNA replication followed by two rounds of chromosome segregation halves the ploidy of the original cell. Accurate chromosome segregation in meiosis I depends on recombination between homologous chromosomes. Sister centromeres attach to the same spindle pole in this division and only segregate in meiosis II.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!