Over the last decade, progress has been made on the development of microphysiological systems (MPS) for absorption, distribution, metabolism, and excretion (ADME) applications. Central to this progress has been proof of concept data generated by academic and industrial institutions followed by broader characterization studies, which provide evidence for scalability and applicability to drug discovery and development. In this review, we describe some of the advances made for specific tissue MPS and outline the desired functionality for such systems, which are likely to make them applicable for practical use in the pharmaceutical industry. Single organ MPS platforms will be valuable for modelling tissue-specific functions. However, dynamic organ crosstalk, especially in the context of disease or toxicity, can only be obtained with the use of inter-linked MPS models which will enable scientists to address questions at the intersection of pharmacokinetics (PK) and efficacy, or PK and toxicity. In the future, successful application of MPS platforms that closely mimic human physiology may ultimately reduce the need for animal models to predict ADME outcomes and decrease the overall risk and cost associated with drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc00857hDOI Listing

Publication Analysis

Top Keywords

microphysiological systems
8
mps platforms
8
mps
5
systems adme-related
4
adme-related applications
4
applications current
4
current status
4
status recommendations
4
recommendations system
4
development
4

Similar Publications

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Advanced In Vitro Models for Preclinical Drug Safety: Recent Progress and Prospects.

Curr Issues Mol Biol

December 2024

Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, D-52074 Aachen, Germany.

The majority of drugs are typically orally administered. The journey from drug discovery to approval is often long and expensive, involving multiple stages. A major challenge in the drug development process is drug-induced liver injury (DILI), a condition that affects the liver, the organ responsible for metabolizing most drugs.

View Article and Find Full Text PDF

Opportunities for microphysiological systems from the view of Japanese industries.

Drug Metab Pharmacokinet

November 2024

Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shimadzu Corporation, [3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan.

Regulatory authorities and pharmaceutical companies in Europe and the United States have paid attention to microphysiological systems (MPS), and various consortia and academic societies have been established. They are actively working toward their implementation under individual company or regulatory acceptance. In Japan, some AMED projects, academic societies, and consortia have also been established and activities have begun.

View Article and Find Full Text PDF

This study explored the evolving landscape of Microphysiological Systems (MPS), with a focus on organoids and organ-on-a-chip (OoC) technologies, which are promising alternatives to animal testing in drug discovery. MPS technology offers in vitro models with high physiological relevance, simulating organ function for pharmacokinetic studies. Organoids composed of 3D cell aggregates and OoCs mimicking in vivo environments based on microfluidic platforms represent the forefront of MPS.

View Article and Find Full Text PDF

Global expansion of microphysiological systems (MPS) and Japan's initiatives: Innovation in pharmaceutical development and path to regulatory acceptance.

Drug Metab Pharmacokinet

December 2024

Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan; Sojo University, Graduate School of Engineering, Department of Life Science, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto, 816-0082, Japan. Electronic address:

Microphysiological systems (MPS) are gaining global attention as potential game-changers in pharmaceutical development. Since 2013, MPS suppliers from university laboratories in the United States and Europe have competed to develop these devices. After the development phase, the focus shifted to the accumulation of applications using MPS for pharmaceutical companies and end users.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!