The regulation of telomere and centromere structure and function is essential for maintaining genome integrity. Rrp1 and Rrp2 are orthologues of Uls1, a SWI2/SNF2 DNA translocase and SUMO-targeted ubiquitin ligase. Here, we show that Rrp1 or Rrp2 overproduction leads to chromosome instability and growth defects, a reduction in global histone levels and mislocalisation of centromere-specific histone Cnp1. These phenotypes depend on putative DNA translocase activities of Rrp1 and Rrp2, suggesting that Rrp1 and Rrp2 may be involved in modulating nucleosome dynamics. Furthermore, we confirm that Rrp2, but not Rrp1, acts at telomeres, reflecting a previously described interaction between Rrp2 and Top2. In conclusion, we identify roles for Rrp1 and Rrp2 in maintaining centromere function by modulating histone dynamics, contributing to the preservation of genome stability during vegetative cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.230193DOI Listing

Publication Analysis

Top Keywords

rrp1 rrp2
24
rrp2
8
genome stability
8
dna translocase
8
rrp1
7
dna translocases
4
translocases rrp1
4
rrp2 distinct
4
distinct roles
4
roles centromeres
4

Similar Publications

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

(or ) , the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen, adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well established as essential for its enzootic cycle, the function of methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of remains unclear. In this study, we demonstrate that MCP5, one of the most abundant MCPs in , is differentially expressed in response to environmental signals as well as at different stages of the pathogen's enzootic cycle.

View Article and Find Full Text PDF

Homologous recombination is a key process that governs the stability of eukaryotic genomes during DNA replication and repair. Multiple auxiliary factors regulate the choice of homologous recombination pathway in response to different types of replication stress. Using Schizosaccharomyces pombe we have previously suggested the role of DNA translocases Rrp1 and Rrp2, together with Srs2 helicase, in the common synthesis-dependent strand annealing sub-pathway of homologous recombination.

View Article and Find Full Text PDF

Extreme heat alerts are the most common form of weather forecasting services used in Australia, yet very limited studies have documented their effectiveness in improving health outcomes. This study aimed to examine the temporal changes in temperature-related mortality in relation to the activation of the heat-health alert and response system (HARS) in the State of Victoria, Australia. We examined the relationship between temperatures and mortality using quasi-Poisson regression and the distributed lag non-linear model (dlnm) and compared the temperature-mortality association between the two periods: period 1- prior-HARS (1992-2009) and period 2- post-HARS (2010-2019).

View Article and Find Full Text PDF

Lyme disease, caused by (or ) , is a complex multisystemic disorder that includes Lyme neuroborreliosis resulting from the invasion of both the central and peripheral nervous systems. However, factors that enable the pathogen to cross the blood-brain barrier (BBB) and invade the central nervous system (CNS) are still not well understood. The objective of this study was to identify the factors required for BBB transmigration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!