A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep neural networks for human microRNA precursor detection. | LitMetric

Background: MicroRNAs (miRNAs) play important roles in a variety of biological processes by regulating gene expression at the post-transcriptional level. So, the discovery of new miRNAs has become a popular task in biological research. Since the experimental identification of miRNAs is time-consuming, many computational tools have been developed to identify miRNA precursor (pre-miRNA). Most of these computation methods are based on traditional machine learning methods and their performance depends heavily on the selected features which are usually determined by domain experts. To develop easily implemented methods with better performance, we investigated different deep learning architectures for the pre-miRNAs identification.

Results: In this work, we applied convolution neural networks (CNN) and recurrent neural networks (RNN) to predict human pre-miRNAs. We combined the sequences with the predicted secondary structures of pre-miRNAs as input features of our models, avoiding the feature extraction and selection process by hand. The models were easily trained on the training dataset with low generalization error, and therefore had satisfactory performance on the test dataset. The prediction results on the same benchmark dataset showed that our models outperformed or were highly comparable to other state-of-the-art methods in this area. Furthermore, our CNN model trained on human dataset had high prediction accuracy on data from other species.

Conclusions: Deep neural networks (DNN) could be utilized for the human pre-miRNAs detection with high performance. Complex features of RNA sequences could be automatically extracted by CNN and RNN, which were used for the pre-miRNAs prediction. Through proper regularization, our deep learning models, although trained on comparatively small dataset, had strong generalization ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958766PMC
http://dx.doi.org/10.1186/s12859-020-3339-7DOI Listing

Publication Analysis

Top Keywords

neural networks
16
deep neural
8
deep learning
8
human pre-mirnas
8
pre-mirnas
5
dataset
5
deep
4
networks
4
human
4
networks human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!