Homogeneous layer formation on textured silicon substrates is essential for the fabrication of highly efficient monolithic perovskite silicon tandem solar cells. From all well-known techniques for the fabrication of perovskite solar cells (PSCs), the evaporation method offers the highest degree of freedom for layer-by-layer deposition independent of the substrate's roughness or texturing. Hole-transporting polymers with high hole mobility and structural stability have been used as effective hole-transporting materials (HTMs) of PSCs. However, the strong intermolecular interactions of the polymers do not allow for a layer formation via the evaporation method, which is a big challenge for the perovskite community. Herein, we first applied a hole-transporting terthiophene polymer (PTTh) as an HTM for evaporated PSCs via an in situ vapor-phase polymerization using iodine (I) as a sublimable oxidative agent. PTTh showed high hole mobility of 1.2 × 10 cm/(V s) and appropriate energy levels as HTM in PSCs ( = -5.3 eV and = -3.3 eV). The PSCs with the in situ vapor-phase polymerized PTTh hole-transporting layer and a co-evaporated perovskite layer exhibited a photovoltaic conversion efficiency of 5.9%, as a proof of concept, and high cell stability over time. Additionally, the polymer layer could fully cover the pyramidal structure of textured silicon substrates and was identified as an effective hole-transporting material for perovskite silicon tandem solar cells by optical simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b20981DOI Listing

Publication Analysis

Top Keywords

solar cells
16
polymer layer
8
perovskite solar
8
layer formation
8
textured silicon
8
silicon substrates
8
perovskite silicon
8
silicon tandem
8
tandem solar
8
evaporation method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!